ZUSGS

science for a changing world

Prepared in cooperation with the
New Jersey Pinelands Commission

Hydrogeologic Framework in Three Drainage Basins in the
New Jersey Pinelands, 2004-06

Scientific Investigations Report 2008-5061

U.S. Department of the Interior
U.S. Geological Survey



Cover: All photographs courtesy of USGS.



Hydrogeologic Framework in Three
Drainage Basins in the New Jersey
Pinelands, 2004-06

By Richard L. Walker, Pamela A. Reilly, and Kara M. Watson

Prepared in cooperation with the

New Jersey Pinelands Commission

Scientific Investigations Report 2008-5061

U.S. Department of the Interior
U.S. Geological Survey



U.S. Department of the Interior
DIRK KEMPTHORNE, Secretary

U.S. Geological Survey
Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2008

For product and ordering information:
World Wide Web: http://www.usgs.gov/pubprod
Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth,
its natural and living resources, natural hazards, and the environment:

World Wide Web: http://www.usgs.gov

Telephone: 1-888-ASK-USGS

Suggested citation:
Walker, R.L., Reilly, PA., Watson, K.M., 2008, Hydrogeologic framework in three drainage basins in the New Jersey
Pinelands, 2004-06: U.S. Geological Survey Scientific Investigations Report 2008-5061, 147 p.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government. Use of company names is for identification purposes only and does not imply
responsibility.

Although this report is in the public domain, permission must be secured from the individual
copyright owners to reproduce any copyrighted material contained within this report.



Contents
ADSTIACT ..ottt R et s bbbt 1
INEFOAUCTION. .ttt 1
PUIPOSE @NA SCOPE vttt ettt sttt ettt nensns 2
DeSCription Of StUAY ATBAS ..uucvceeceeceeeireieeeeees sttt s st s st b st et s s aensns 2
Hydrogeologic SELING ....ccccseecc ettt s bbb 4
Previous INVESTIGationNs........ccccuicieicereeresie et bbb 4
Methods Of INVESTIGATION ...ttt 4
DAt ACQUISTEION ...cuvueviecteceee ettt enae st s s s s s 7
WEll-NUMDEING SYSIEM ..ottt s 7
Altitude Data.....c.coovevrreenee
Drilling Methods
GEOPhYSICAl METNOMS ...ttt 8
Borehole Geophysical Methods........cc.oieeieieesreeeess s ssens 9
Surface Geophysical Methods ... 9
INTErpretive MELNOMUS. ...
Database COMPIlation ..ottt
Development of the Hydrogeologic Framework......
Mapping Hydrogeologic Framework Layers
HydrogeologiC SECHIONS ..ottt
Determination of Aquifer System Properties ........ccevenenesesesesseesesessesesssssssenaens
SIUG-TESE MELNOUS. ...ttt een
SIUG-TEST ANGIYSIS .ovvrereeeeeerrereereeeeireesee et ses st sns s s snsnsnenen
Well-Performance TESTS ...ttt
Estimation of Spatial Variability of Aquifer System Properties
Hydrogeologic FrameWOrK . ...t esssssseseens
Hydrogeology of Albertson Brook Study Area and Vicinity........cccocveeeevcneveecienenseciessssneeennns
Hydrogeology of McDonalds Branch Study Area and Vicinity ......c..coooevevenrneneneneissnseneens
Hydrogeology of Morses Mill Stream Study Area and ViGinity........cooooceeuveeeecevenereeeceeeieeeenees
SUMMArY and CONCIUSIONS ......vucceiecteceec ettt
ACKNOWIBAGMENTES ...ttt a s s st b s st ananae
RETEIENCES CIBM. ...ttt b bbb
Appendix 1 Lithologic and geophysical logs of selected boreholes and newly installed
wells in Kirkwood-Cohansey aquifer system, New Jersey Pinelands.........cccocovevernincenen. 80

Appendix 2 Altitude, thickness, estimated sand content, and (or) horizontal hydraulic
conductivity of hydrogeologic layers of the Kirkwood-Cohansey aquifer system,
Albertson Brook study area and vicinity, New Jersey Pinelands.........ccccocvornrncniniccnenn. 101

Appendix 3 Altitude, thickness, estimated sand content, and (or) horizontal hydraulic
conductivity of hydrogeologic layers of the Kirkwood-Cohansey aquifer system,
McDonalds Branch study area and vicinity, New Jersey Pinelands.........c.ccccocovevinicninnenes 117

Appendix 4 Altitude, thickness, estimated sand content, and (or) horizontal hydraulic
conductivity of hydrogeologic layers of the Kirkwood-Cohansey aquifer system,

Morses Mill Stream study area and vicinity, New Jersey Pinelands........c..cccccouevenrcinnnnas 133



Figures
1. Map showing location of the Pinelands study areas, Atlantic, Burlington, and
Camden Counties, NEW JBISBY ...ttt sttt esae s 3
2. (a) Generalized hydrogeologic section through the New Jersey Coastal Plain
ANA (D) TN OF SBCTION oot e et et e et eeer e e e eeee et s s seeaeeseeeasessenesseneeeasesaeaenneeen 6
3-7. Maps showing—
3. Location of wells with horizontal hydraulic-conductivity data, Albertson Brook
study area and vicinity, New Jersey Pinelands.........cccocoornniinnnncnenneneneenes 18
4. Location of wells with horizontal hydraulic-conductivity data, McDonalds
Branch study area and vicinity, New Jersey Pinelands .........cccoooeeeeeveccreccrerninennee 19
5. Location of wells with horizontal hydraulic-conductivity data, Morses Mill
Stream study area and vicinity, New Jersey Pinelands..........cccoooevevenereevcrvirecrnnnne 20
6. Location of boreholes, wells, and ground-penetrating radar (GPR) data points
used to describe the hydrogeologic framework of the Albertson Brook study
area and vicinity, New Jersey Pinelands ... 22
7. Location of hydrogeologic lines of section, and wells or boreholes with
lithologic or geophysical data, Albertson Brook study area and vicinity,
NeW Jersey PINEIANUS ... ssssss et sssssssssssssnsesans 26
8-11.  Sections showing—
8. Hydrogeologic section A-A’, Albertson Brook study area and vicinity,
New Jersey PINEIANUS ...ttt 27
9. Hydrogeologic section B-B’, Albertson Brook study area and vicinity,
NeW Jersey PINEIANUS ... e ssssssssssssssssnsesnes 28
10. Hydrogeologic section C-C’, Albertson Brook study area and vicinity,
NeW Jersey PiNelands........cccoociriieisssscesss e sseses 29
11.  Hydrogeologic section D-D’, Albertson Brook study area and vicinity,
New Jersey PINEIANUS ..ottt 30
12-14. Maps showing—
12. Results of ground-penetrating radar (GPR) surveys used to describe the hydro-
geologic framework of the Albertson Brook study area and vicinity, New Jersey
PINEIANAS ...t 31
13. Location of boreholes, wells, and ground-penetrating radar (GPR) data points
used to describe the hydrogeologic framework of the McDonalds Branch study
area and vicinity, New Jersey Pinelands ... 33
14. Location of hydrogeologic lines of section, and wells or boreholes with lithologic
or geophysical data, McDonalds Branch study area and vicinity, New Jersey
PINBIANGAS ...ttt bbbt 36
15-18.  Sections showing—

15.

16.

17.

18.

Hydrogeologic section A-A’, McDonalds Branch study area and vicinity,

NeW Jersey PINEIANUS ...ttt 37
Hydrogeologic section B-B’, McDonalds Branch study area and vicinity,
NeW Jersey PINEIANUS ... s ssssssssssssssssnsesnns 38
Hydrogeologic section C-C’, McDonalds Branch study area and vicinity,
NeW Jersey PINelands........ccoccrnieiecssce et 39

Hydrogeologic section D-D’, McDonalds Branch study area and vicinity,
NeW Jersey PINEIANUS ...ttt 40



19-21.

22-25.

26.

Maps showing—

19. Results of ground-penetrating radar (GPR) surveys used to describe the hydro-
geologic framework of the McDonalds Branch study area and vicinity, New
JErseY PINEIANGS ..ottt 42

20. Location of boreholes, wells, and ground-penetrating radar (GPR) data points
used to describe the hydrogeologic framework of the Morses Mill Stream study
area and vicinity, New Jersey Pinelands ... 44
21.  Location of hydrogeologic lines of section, and wells or boreholes with lithologic
or geophysical data, Morses Mill Stream study area and vicinity, New Jersey
PINBIANGAS ... bbbt 48
Sections showing—

22. Hydrogeologic section A-A’, Morses Mill Stream study area and vicinity,

NeW Jersey PINEIANUS ...ttt 49
23. Hydrogeologic section B-B’, Morses Mill Stream study area and vicinity,

NeW JErsey PINEIANUS ..ottt sessnseenns 50
24.  Hydrogeologic section C-C’, Morses Mill Stream study area and vicinity,

New Jersey PINEIANUS ...ttt sss s 51
25. Hydrogeologic section D-D’, Morses Mill Stream study area and vicinity,

New Jersey PINEIANUS ...ttt 52

Map showing results of ground-penetrating radar (GPR) surveys used to describe
the hydrogeologic framework of the Morses Mill Stream study area and vicinity,
NEW JErsey PINEIANGS ..ottt st eenen 53



Vi

Tables

1.

Geologic and hydrogeologic units in the New Jersey Coastal Plain in

NBUV JBISEY -.eieitrceeeeereieeseieese et s et s et ettt 5
Records of selected hydrologic investigation sites used to describe the hydro-
geologic framework of the Kirkwood-Cohansey aquifer system in Pinelands study
areas and ViCinity, NEW JBISBY ... isesssseesesssssssssesssssssssssssssssssssessesssssssessees 57
Estimated horizontal hydraulic conductivities and details of slug test for the 16

new wells installed in the Kirkwood-Cohansey aquifer system, Pinelands study

AFEAS, NBW JBISBY ettt sttt ettt en 14
Estimated hydraulic conductivity (K) values for sites in the Pinelands study areas

AN VICINITY, NBW JEISEY .ottt s saen 73
Altitudes of tops of hydrogeologic layers of the Kirkwood-Cohansey aquifer

system, Albertson Brook study area and vicinity, New Jersey Pinelands...........ccoco..... 23

Altitudes of tops of hydrogeologic layers of the Kirkwood-Cohansey aquifer system

at selected wells in the McDonalds Branch study area and vicinity, New Jersey
PINEIANGS. ...t e 34
Altitudes of tops of hydrogeologic layers of the Kirkwood Cohansey aquifer system,
Morses Mill study area and vicinity, New Jersey Pinelands........ccccocvrrnninncnineinenes 45



Conversion Factors and Datum

Inch/Pound to SI

Multiply By To obtain
Length
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Area
square mile (mi?) 259.0 hectare (ha)
square mile (mi?) 2.590 square kilometer (km?)
Volume
gallon (gal) 3.785 liter (L)
gallon (gal) 0.003785 cubic meter (m?)
gallon (gal) 3.785 cubic decimeter (dm?)
Flow rate
gallon per minute (gpm) 0.06309 liter per second (L/s)
gallon per day (gpd) 0.003785 cubic meter per day (m?/d)
Pressure
pound per square inch (Ib/in?) 6.895 kilopascal (kPa)

Specific capacity

gallon per minute per foot [(gal/min)/ft)]

0.2070

liter per second per meter [(L/s)/m]

Hydraulic conductivity

foot per day (ft/d)

0.3048

meter per day (m/d)

Transmissivity*

foot squared per day (ft/d)

0.09290

meter squared per day (m%d)

Velocity

foot per microsecond (ft/ps)

0.3048

meter per microsecond (m/ps)

Vertical coordinate information is referenced to the North American Vertical Datum of 1988

(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.

*Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times
foot of aquifer thickness [(ft}/d)/ft?]ft. In this report, the mathematically reduced form, foot
squared per day (ft%d), is used for convenience.

vii






Hydrogeologic Framework in Three Drainage Basins in the
New Jersey Pinelands, 2004-06

By Richard L. Walker, Pamela A. Reilly, and Kara M. Watson

Abstract

The U.S. Geological Survey, in cooperation with the New
Jersey Pinelands Commission, began a multi-phase hydrologic
investigation in 2004 to characterize the hydrologic system
supporting the aquatic and wetland communities of the New
Jersey Pinelands area (Pinelands). The Pinelands is an ecologi-
cally diverse area in the southern New Jersey Coastal Plain
underlain by the Kirkwood-Cohansey aquifer system. The
demand for ground water from this aquifer system is increas-
ing as local development increases. To assess the effects of
ground-water withdrawals on Pinelands stream and wetland
water levels, three drainage basins were selected for detailed
hydrologic assessments, including the Albertson Brook,
McDonalds Branch and the Morses Mill Stream basins. Study
areas were defined surrounding the three drainage basins to
provide sub-regional hydrogeologic data for the ground-water
flow modeling phase of this study.

In the first phase of the hydrologic assessments, a data-
base of hydrogeologic information and a hydrogeologic frame-
work model for each of the three study areas were produced.
These framework models, which illustrate typical hydrogeo-
logic variations among different geographic sub-regions of the
Pinelands, are the structural foundation for predictive ground-
water flow models to be used in assessing the hydrologic
effects of increased ground-water withdrawals.

During 2004-05, a hydrogeologic database was com-
piled using existing and new geophysical and lithologic
data including suites of geophysical logs collected at 7
locations during the drilling of 21 wells and one deep bor-
ing within the three study areas. In addition, 27 miles of
ground-penetrating radar (GPR) surface geophysical data were
collected and analyzed to determine the depth and extent of
shallow clays in the general vicinity of the streams. On the
basis of these data, the Kirkwood-Cohansey aquifer system
was divided into 7 layers to construct a hydrogeologic frame-
work model for each study area. These layers are defined by
their predominant sediment textures as aquifers and leaky con-
fining layers. The confining layer at the base of the Kirkwood-
Cohansey aquifer system, depending on location, is defined
as one of two distinct clays of the Kirkwood Formation. The
framework models are described using hydrogeologic sec-

tions, maps of structure tops of layers, and thickness maps
showing variations of sediment textures of the various model
layers. The three framework models are similar in structure
but unique to their respective study areas.

The hydraulic conductivity of the Kirkwood-Cohansey
aquifer system in the vicinity of the three study areas was
determined from analysis of 16 slug tests and 136 well-perfor-
mance tests. The mean values for hydraulic conductivity in the
three study areas ranged from about 84 feet per day to 130 feet
per day.

With the exception of the basal confining layers, the
variable and discontinuous nature of clay layers within the
Kirkwood-Cohansey aquifer system was confirmed by the
geophysical and lithologic records. Leaky confining layers and
discontinuous clays are generally more common in the upper
part of the aquifer system. Although the Kirkwood-Cohansey
aquifer system generally has been considered a water-table
aquifer in most areas, localized clays in the aquifer layers
and the effectiveness of the leaky confining layers may act to
impede the flow of ground water in varying amounts depend-
ing on the degree of confinement and the location, duration,
and magnitude of the hydraulic stresses applied.

Considerable variability exists in the different sediment
textures. The extent to which this hydrogeologic variability
can be characterized is constrained by the extent of the avail-
able data. Thus, the hydraulic properties of the modeled layers
were estimated on the basis of available horizontal hydraulic
conductivity data and the range of sediment textures estimated
from geophysical and lithologic data.

Introduction

The New Jersey Pinelands area (Pinelands) (fig.1) is a
1.1-million-acre natural reserve area in southern New Jersey
that overlies the Kirkwood-Cohansey aquifer system in the
Atlantic Coastal Plain (fig. 2) (New Jersey Pinelands Commis-
sion, 1981). This ecologically diverse area supports a variety
of habitats and is home to many threatened and endangered
species. Cedar swamps, pine and oak forests, agricultural
areas, and newly developed commercial and residential areas
dominate the landscape. Demand for water from the Kirk-
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wood-Cohansey aquifer system is increasing as development
within the area increases.

The Pinelands Commission has been tasked with
evaluating increased water-supply demands within the
Pinelands area with respect to the potential of adverse effects
on the hydrologic and ecological systems in the area. The rela-
tion between key hydrologic and ecological attributes needs
to be characterized to (1) assess the effects of ground-water
diversions from the Kirkwood-Cohansey aquifer system on
stream and wetland water levels within the Pinelands, and (2)
determine the potential ecological effects of reduced water
levels on aquatic and wetland communities (New Jersey
Pinelands Commission, 2003). Therefore, the U.S. Geological
Survey (USGS), in cooperation with the Pinelands Commis-
sion, began a multi-phase hydrologic investigation in 2004 to
characterize the hydrologic system supporting the Pinelands
aquatic and wetland communities.

Three Pinelands drainage basins— Albertson Brook,
McDonalds Branch and Morses Mill Stream — were selected
for a detailed hydrologic assessment to provide the informa-
tion needed to develop a ground-water flow model that can
be used to predict hydrologic responses to increased ground-
water withdrawals. The first phase of this assessment consists
of a comprehensive hydrogeologic investigation of each study
area. The major objectives of this hydrogeologic investigation
are to (1) compile available hydrogeologic data (2) conduct
additional borehole and surface geophysical surveys and tests
to measure aquifer hydraulic properties, (3) characterize the
hydrogeologic framework, and (4) develop a hydrogeologic
framework model of each study area that will be used in
developing ground-water flow models for those areas.

Purpose and Scope

This report describes the methods used in, and results of,
the hydrogeologic investigations conducted in and near the
three study areas in the New Jersey Pinelands. The report doc-
uments the data-collection phase of the study, which included
compiling historical information on surficial geology, stratig-
raphy, and aquifer and confining-unit characteristics; drilling
21 wells; conducting surface and borehole geophysical sur-
veys; analyzing results of slug tests and well-performance tests
to estimate hydraulic properties; and interpreting the hydro-
geology of the localized Pinelands study areas. The interpre-
tations illustrate localized differences in the hydrogeology
in the vicinity of the three study areas that are typical of the
Pinelands and they provide the information needed to develop
and calibrate a ground-water flow model for each of the three
study basins. The hydrogeologic framework is presented as
structure-contour maps and maps that show the thickness of
hydrogeologic layers, differences in sediment textures, and
horizontal hydraulic conductivity (K) data estimated from slug
tests and well-performance tests.

Description of Study Areas

The three drainage basins were selected from a pool of
39 candidate basins because they represent a range of typical
hydrologic, geologic, and ecological conditions and landscape
features. Key hydrologic criteria for selection include aqui-
fer thickness, drainage area, stream length, drainage density,
past and current hydrologic monitoring and modeling, and
current (2004) and potential ground-water withdrawals from
the Kirkwood-Cohansey aquifer system. Major landscape
features such as land use, soil type, and landscape cover also
were considered. The Albertson Brook, McDonalds Branch,
and Morses Mill Stream drainage basins were selected for the
coordinated study of hydrology and wetland ecology (fig. 1).
For the purpose of this report, each study area consists of the
drainage basin surrounded by a buffer zone extending beyond
the drainage-basin boundary. The larger area created by the
buffer assures that a comprehensive hydrogeologic data set
is available for each of the study areas. The extended hydro-
geologic framework buffer boundaries also encompass the
planned ground-water flow model domain.

The Albertson Brook study area encompasses 84.7 mi?
consisting of a large part of the Albertson Brook drainage
basin (20.18 mi?) and the surrounding buffer zone. The Alb-
ertson Brook study area falls predominantly within Camden
County with its eastern-most part extending into Atlantic
County (fig. 1). The study area is bordered to the southwest
by the Gloucester County line and is situated south of the
Camden-Burlington County line. The dominant forested cover
in the study area consists of mixed pine and oak forests in the
uplands and hardwood and cedar swamps flanking the low-
lands. Agricultural land is common throughout the basin but
is nearly continuous south of the Albertson Brook. Residential
development is most dense in the northern part of the basin
in Camden County and along the highway corridors. Lightly
developed residential areas are present in the lower part of the
basin, which is largely agricultural or forested.

The McDonalds Branch study area is located in a mini-
mally developed area in Burlington County, New Jersey (fig.
1). The basin is small (5.52 mi?) and forested, containing a
mix of pine and oak forests that surround hardwood and cedar
swamps (Johnsson and Barringer, 1993). A small commercial
cranberry bog surrounds McDonalds Branch in the lower part
of the study area. Also in the lower part of the basin are lightly
developed residential areas and a small recreational lake. The
McDonalds Branch study area encompasses 28.08 mi?.

The Morses Mill Stream basin is relatively small (8.35
mi?), and the study area totals 35.28 mi2. The Morses Mill
Stream study area is located in Atlantic County (fig. 1). In
the eastern part of the study area, parts of the buffer zone
and drainage basin are situated outside of the New Jersey
Pinelands area boundary.

Developed and agricultural land are prominent features
of the Albertson Brook and Morses Mill Stream study areas,
and several production and irrigation wells, screened in the
Kirkwood-Cohansey aquifer system, are within each basin.
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All study areas contain wetlands, with varying vegetative
cover and soil conditions that typically have ground-water
levels ranging from O to 12 in. below land surface during the
growing season (U.S. Department of Agriculture, Natural
Resources Conservation Service (NRCS), 2000).

Hydrogeologic Setting

The three study areas are underlain by the sediments
of the Kirkwood-Cohansey aquifer system in the central
and southern Coastal Plain of New Jersey. The Kirkwood-
Cohansey aquifer system is the upper-most hydrogeologic
unit of a wedge-shaped sequence of Coastal Plain sediments
that lie on the pre-Cretaceous bedrock (Zapecza, 1989) (table
1). The Coastal Plain sediments are composed of sand and
gravel aquifers separated by silt and clay confining layers that
thicken and dip from the western limit of the Coastal Plain at
the Fall Line to the southeast, reaching a thickness of more
than 6,500 ft at Cape May, New Jersey (Gill and Farlekas,
1976). The Kirkwood-Cohansey aquifer system extends from
the updip limit of the Kirkwood Formation to the Atlantic
coast (fig. 2). The aquifer system is generally considered to be
an unconfined (water-table) aquifer, although locally extensive
clay layers can exist that can cause perched or semi-confined
conditions (Zapecza, 1989, p. B19).

The Kirkwood-Cohansey aquifer system is principally
composed of sands, silts, and clays of the Miocene age
Kirkwood Formation and gravels, sands, and clays of the
Cohansey Sand, also of Miocene age. Depending on location,
the Miocene age Bridgeton Formation and (or) Pleistocene
age and Holocene age sediments overlie the aquifer system in
the vicinity of the study areas. Where present, these surfi-
cial sediments are considered to be part of the Kirkwood-
Cohansey aquifer system. The material that composes the
Cohansey Sand typically is coarser grained than that of the
underlying Kirkwood Formation, which grades to clay near
its base (Zapecza, 1989). Carter (1978) described the Miocene
Cohansey Sand as a sequence of regressive barrier and barrier-
protected deposits ranging from surf zones to back bays and
marshes, a depositional environment that contributes to the
formation of discontinuous lenses of sand, silt, and clay.

The generalized hydrogeologic section shown in figure 2
illustrates the position of the Kirkwood-Cohansey aquifer sys-
tem in relation to other Coastal Plain sediments. The position
of the two regional basal surfaces of the Kirkwood-Cohansey
aquifer system, as described by Zapecza, (1989, p. B-19) are
shown in figure 2. In the western part of the aquifer system,
beneath the Albertson Brook and McDonalds Branch study
areas, the base of the aquifer system is the basal clay bed in
the lower part of Kirkwood Formation. About 8 mi west of the
Morses Mill Stream study area, the basal clay described above
dips below a thick diatomaceous clay, an extensive confin-
ing bed in the upper part of the Kirkwood Formation locally
known as the Upper Kirkwood confining layer (Zapecza,
1989, p. B18-B19) (table 1; fig. 2). The diatomaceous clay is

present locally and separates the Kirkwood Formation into
upper and lower sands. From the updip extent of its subcrop,
the diatomaceous clay dips and thickens toward the east to
approximately 200 ft (Zapecza, 1989, pl. 22, 23) in the vicin-
ity of Morses Mill Stream study area, locally forming the
basal clay confining layer of the Kirkwood-Cohansey aquifer
system. The upper sands of the Kirkwood Formation remain
hydraulically connected to the Cohansey Formation and retain
the name Kirkwood-Cohansey aquifer system. The lower sand
of the Kirkwood Formation that dips beneath the diatoma-
ceous clay is locally referred to as the Atlantic City 800-foot
sand (fig. 2).

Previous Investigations

The geology and hydrogeology of the Miocene Kirk-
wood Formation, Cohansey Sand, Bridgeton Formation, and
overlying Quaternary sediments that compose the Kirkwood-
Cohansey aquifer system have been discussed by numerous
investigators. The depositional environment of the Cohansey
Sand described by Carter (1978) and the surficial geology of
the central and southern Coastal Plain described and mapped
by Newell and others (2000) represent some of the most recent
work that interprets the origin and distribution of these sedi-
ments. The geology and ground-water resources of various
counties were studied previously including Burlington County
(Rush, 1968), Camden County (Farlekas and others, 1976),
Gloucester County (Hardt and Hilton, 1969), and Ocean
County (Anderson and Appel, 1969). Barksdale and others
(1958) discuss the Kirkwood Formation and the Cohansey
Sand over a four-county area in the New Jersey Coastal Plain.
These early investigators describe the Kirkwood Formation
and the Cohansey Sand as separate geologic units but often
indicate that they are hydraulically connected. In addition, the
Cohansey Sand and the overlying younger sediments were
recognized as forming a single hydrologic unit. Rhodehamel
(1973) discusses the geology and hydrology of the Kirkwood
Formation and Cohansey Sand in the vicinity of the Mullica
River basin in Atlantic and Burlington Counties (fig.1) and
describes the Cohansey Sand—upper Kirkwood Formation as a
single aquifer. Zapecza (1989) describes the Kirkwood-Cohan-
sey aquifer system as it applies to a multi-layer ground-water
flow model of the New Jersey Coastal Plain. The soils of Bur-
lington County are described by Markley (1971), and the geol-
ogy and soils of the McDonalds Branch basin are described
and summarized by Lord and others (1990) and Johnsson and
Barringer (1993), respectively.

Methods of Investigation

The methods discussed in the following sections describe
the work required to acquire and interpret data in order to
generate a hydrogeologic framework for each study area. The
hydrogeologic framework is intended to provide a structural



Table 1.

Geologic and hydrogeologic units in the New Jersey Coastal Plain in New Jersey.

Methods of Investigation

Albertson Brook and
McDonalds Branch
study area

Morses Mill
study area

SYSTEM | SERIES | GEOLOGIC UNIT LTHOLOGY HYDROGEOLOGICHYDROGEOLOGIC| 1ypROLOGIC CHARACTERISITICS
- Alluvial deposits Sand, silt, and black mud
o Holocene Surficial material, often hydraulically
° Beach sand Sand, quartz, light-colored, medium- to coarse-grained, . . . . connected to underlying aquifers.
= and gravel pebbly Undifferentiated | Undifferentiated | [ocally some units may act as
é confining units. Thicker sands are
. Cape May capable of yielding large quantities
Pleistocene Formation of water
Pensauken Sand, quartz, light-colored, heterogeneous, clayey,
Formation pebbly
Bridgeton
Formation
A major aquifer system.
i ight- . . G d wat 1l
Beacon Hill Gravel | Gravel, quartz, light-colored, sandy Klrkwovod-Cohansey Klrkwo_od-Cohansey unﬂé:? wng[;ﬁ%ctérgngﬁgﬁf; y
aquifer system aquifer system | In Cape May County the
X X X Cohansey Sand is a confined
Cohansey Sand Sand, quartz, light-colored, medium- to coarse-grained, aquifer
pebbly; local clay beds
Miocene
Confining unit
[ Eioi(araind: " | Thick diatomaceous clay bed occurs
) L A along coast and for a short distance
Kitwood | S g o e v velereang | i 'Rt e b <and
Formation diatomac%ous ciay g | 2zone’  |is present in the middle of this unit
g Confining unit
e Atlantic City . :
P 800-foot sand A major aquifer along the coast
Alloway Clay Member or equivalent
Piney Point
Formation ! ' ) )
Sand, quartz and glauconite, fine- to coarse-grained Piney Point aquifer Yields moderate quantities of water
Eocene Shark River
Formation =
=]
Manasquan Clay, silty and sandy, glauconitic, green, gray, and = .
Formation brown, contains fine-grained quartz sand :E Poorly permeable sediments
c
. Sand, quartz, gray and green, fine- to coarse-grained, Q " -
Vincentown glauconitic, and brown clayey, very fossiliferous, © Vincentown aquifer g}ew:tesrmiﬁ” atr?d T\%g?r?t? gﬁgm'"es
Formation glauconite and quartz calcarenite 2 P
Paleocene 2 area
o
Homerstown Sand Sand, clayey, glauconitic, dark green, fine- to g
coarse-grained o .
Poorly pemeable sediments
Tinton Sand .
infon_San Sand, quartz, and glauconite, brown and gray, —_—_————
Red Bank Sand fine- to coarse-grained, clayey, micaceous | Red Bank Sand1 Yields small quantities of water
in and near its outcrop area
Navesink Sand, clayey, silty, glauconitic, green and black, :
Formation medium- to coarse-grained Poorly permeable sediments
Sand, quartz, brown and gray, fine- to coarse-grained, .
Mount Laurel Sand slightlnglauconitic gray, 9 Weononah-Mount Laurel aquifer A major aquifer
. Sand, very fine- to fine-grained, gray and brown, silty,
Wenonah Formation slightly glauconitic
Marshalltown-Wenonah confining bed | A leaky confining bed
M”;l;snr;]aalﬁgnvn Clay, silty, dark greenish-gray, glauconitic quartz sand
Upper Englishtown Sand, quartz, tan and gray, fine- to medium-grained; Englishtown aquifer system A major aquifer. Two sand units in
® Cretaceous Formation local clay beds Monmouth and Ocean Counties
§ Woodbury Clay Clay, gray and black, micaceous silt
o . .o
S Merchantville-Woodbury confining bed |A major confining bed. Locally the
. - . Mechantville Formation may contain
Merchantville Clay, glauconitic, micaceous, gray and black; a thin water-bearing sand
Formation locally very fine-grained quartz and glauconitic sand
Sand, quartz, light-gray, fine- to coarse-grained.
Magothy Local beds of dark-gray lignitic clay. Includes Upper aquifer
Format D pper aq
ormation Old Bridge Sand Member B
3 A major aquifer system. In the
‘?E northem Coastal Plain, the upper
it . arai = Confining bed aquifer is equivalent to the
Raritan Sand, quartz, light-gray, fine- to coarse-grained T3 9 Old Bridge aquifer and the middle
" pebbly arkosic; contains red, white, and variegated clay.| g > " : h
Formation Includes Farington Sand Member £° aquifer is equivalent to the
S5 Middle aquifer Farrington aquifer. In the Delaware
T 9 River Valley, three aquif
T5 Valley, quifers are
& g recognized. In the deeper sub-
g Confining bed surface, units below the upper
. . 5 aquifer are undifferentiated
Lower Potomac Group Alternating clay, silt, sand, and gravel o
Cretaceous Lower aquifer

Pre-Cretaceous

Bedrock

Precambrian and Lower Paleozic crystalline rocks,
metamorphic schist and gneiss; locally Triassic
sandstone and shale and Jurassic diabase are

Bedrock confining bed

No wells obtain water from
these consolidated rocks,
except along Fall Line

"Minor aquifer not mapped in the report.

Modified from Zapecza, 1989
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foundation for ground-water flow modeling of the three study
areas. The framework investigations were extended outside
the study-area boundaries to provide additional information
used to determine the sub-regional structural characteristics of
the aquifer system and, thereby, improve the definition of the
framework model at the limits of the study areas.

The Kirkwood-Cohansey aquifer system has been
described predominantly as a water-table aquifer, within which
perched or semi-confined conditions can exist as a result of
localized clays (Zapecza 1989). Thus, the framework inter-
pretation ideally represents the structure of the aquifer system
in a way that accounts for local lithologic differences, yet
conforms to the sub-regional structural and depositional char-
acteristics. The approach for developing the hydrogeologic
framework model was to divide the aquifer system into aquifer
layers and leaky confining layers that generally conform to
the aquifer systems sub-regional structural and depositional
characteristics and then describe the aquifer system hydraulic
and physical properties associated with those layers.

The methods used to determine the aquifer system
properties from well-performance and slug tests are described,
including the details of the analytical methods used to cal-
culate horizontal hydraulic conductivity (K). These analyses
provided ranges of K values that represent the aquifer system
layers at locations where suitable wells were available. In
addition, methods of estimating sediment textures within the
hydrogeologic framework layers using geophysical and litho-
logic data are discussed in the following sections.

Data Acquisition

To characterize the hydrogeology of the Kirkwood-
Cohansey aquifer system in each study area and to establish
the ways this aquifer system interacts with water levels that
affect wetlands and surface water, a thorough understanding
of the continuity and effectiveness of the individual hydrogeo-
logic layers involved in the processes of transmitting or isolat-
ing ground water is needed. Data-collection activities used
to define the extent, thickness, and character of the principal
hydrogeologic layers in each of the three study areas include

* A search of hydrogeologic literature;
» Evaluation of available geophysical and lithologic data;
* Geophysical logging of boreholes during well drilling;

* Examination of aquifer sediment samples and drill
cuttings;

* Collection and analysis of surface geophysical data
obtained using ground-penetrating radar (GPR);

* Performing slug tests;

¢ Collection of well-performance test data; and
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» Compilation of a database of geophysical, lithologic,
and hydraulic property data.

Data were obtained from multiple sources including the
files of New Jersey Department of Environmental Protection
(NJDEP), Pinelands Commission, the USGS, and the U. S.
Environmental Protection Agency, and records of well drillers,
well owners, and previous studies.

Well-Numbering System

Water-level monitoring wells installed during this investi-
gation have a site name composed of the following codes:
A two-letter drainage basin identifier

e MB (McDonalds Branch),
e AB (Albertson Brook),

¢ MM (Morses Mill Stream);
followed by a two-letter well type code

e OW (Basin cluster observation wells),

e UP (upland water-level wells);
and a well number followed by a letter suffix
e S (shallow),

e M (middle),
e D (deep).

The letter suffixes indicate the relative depth of an individual
well within a cluster and are not intended to indicate that

the well is screened in a specific hydrogeologic layer of the
Kirkwood-Cohansey aquifer system.

Records of wells and boreholes included in this study
(table 2 at end of report) were compiled and entered into the
USGS Ground Water Site Inventory (GWSI) database (http://
waterdata.usgs.gov/nj/nwis/gwsi). These sites are
identified by the USGS well number (UID), a two-digit county
code number followed by a four-digit sequence number, and a
unique site name composed of the UID followed by the local
site identifier. The county code numbers used in this report
are 01 for Atlantic County, 05 for Burlington County, 07 for
Camden County, 15 for Gloucester County, and 29 for Ocean
County.

Altitude Data

All altitude data presented in this report are referenced
to the North American Vertical Datum of 1988 (NAVDSS).
Altitudes below NAVDS8 are preceded by a minus sign (-).
Altitudes used in this study have been determined in four ways
using differential leveling, from topographic maps, using a
surveying altimeter, or from a digital elevation model. All
land-surface altitudes were rounded to the nearest foot; the
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altitude values, the methods used to determine the altitudes,
and the levels of accuracy are given in table 2.

Altitude data determined at new wells by level or other
surveying method, with an accuracy of 1.0 ft or better, are
considered highly accurate and rounded to the nearest foot. All
other sites used for the hydrogeologic framework have associ-
ated altitude data that were previously manually interpolated
from 10-ft interval contours on 7.5-minute topographic quad-
rangle maps; these are considered accurate to within 5 ft.

A digital version of the 7.5-minute quadrangle maps,
referred to as the USGS 10-meter Digital Elevation Model
(10-meter DEM) of New Jersey, is a digital cartographic/
geographic dataset of altitudes in xyz coordinates derived
from contour lines and photogrammetric methods using USGS
7.5-minute topographic quadrangle maps. The 10-meter DEM
uses the same source as the historical altitude data, which are
manually derived from 7.5-minute quadrangle maps, but the
10-meter DEM also contains updated point data that provide
refined altitude values. The 10-meter DEM is considered to be
accurate to within 5 ft.

To ensure that the 10-meter DEM was reliable, its grid
was contoured and examined for anomalous data. In some
localized areas, the contouring revealed altitude errors in the
10-meter DEM, indicating that during the construction of the
10-meter DEM, incorrect values were assigned to unlabeled
contours on the quadrangle maps in a few areas. The errors
were corrected by comparing the contours with those on the
7.5-minute quadrangle maps. Where the contours were inter-
preted incorrectly, corrections were applied by cutting out the
affected area and patching in the corrected grid values for that
area.

The altitudes of pre-existing sites that were originally
determined from 7.5-minute topographic quadrangle maps
were compared electronically with the corrected 10-meter
DEM. Where the original site-altitude data were found to be in
error, altitudes were updated in the database with values from
the 10-meter DEM. The sites with more accurate altitudes,
such as those determined by leveling, were not changed. Thus,
the altitude used for a site is always based on the most accu-
rate information available.

Drilling Methods

A total of 21 wells were constructed during this phase of
the study in support of both the framework and water-level
investigations. In addition, 1 deep boring and 10 shallow bor-
ings were completed to obtain lithologic and geophysical data.
Locations of wells and borings were selected to fill gaps in
the existing stratigraphic and geophysical data, aquire data on
hydraulic properties of the aquifer system, and provide for col-
lection of water-level data for another phase of this study.

All 21 wells and the 1 deep boring (051597 MBTB-1)
were drilled by constructing open mud-filled boreholes using
standard hydraulic rotary drilling methods. The drilling mud
was composed of potable water mixed with a bentonite-clay-

based drilling fluid additive. To maintain an adequate flow of
cuttings from the borehole and to stabilize the borehole wall,
the drilling-mud viscosity was tailored to the conditions in
the borehole. During drilling, the materials penetrated by the
boreholes were described by USGS field staff on the basis of
drilling characteristics interpreted by the well driller, visual
examination of drill cuttings washed from the hole, and visual
examination of 12 aquifer sediment samples collected with a
2-in.-diameter split spoon sampler at selected locations and
depth intervals.

Sixteen of the new wells were installed in the three study
areas to determine aquifer hydraulic properties and to serve as
water-level monitoring sites. The wells were arranged in six,
3-well nests, two nests per study area. At each of two loca-
tions, one existing shallow well was used as part of the 3-well
nests. At the well nest locations, well screens were usually
installed at three depth intervals representing the major water-
bearing zones, which are distributed from the base of the
Kirkwood-Cohansey aquifer system to the water table. Five
additional wells were completed in the shallow part of the
surfical aquifer in the upland areas in the McDonalds Branch
basin by using the same methods and materials.

All monitoring wells were installed using hydraulic
rotary drilling methods by a New Jersey Licensed well driller
in accordance with New Jersey State regulations. Wells were
constructed of 2-in.-diameter flush joint polyvinyl chloride
(PVC) casings with 10-ft-long screens with 0.010-in. slots.
All wells were finished above land surface and secured with a
steel surface casing with a lockable cap. Pumping and surg-
ing methods were used to develop the wells after at least 24
hours had elapsed following well completion. Records of the
wells installed are given in table 2 and the lithologic logs are
provided (app. 1).

Geologic sediment samples were collected from a total of
10 shallow borings at various locations in the Albertson Brook
and McDonalds Branch basins using Geoprobe® sediment-
sampling equipment. Using these samples, the lithology pen-
etrated by each boring was described and their lithologic logs
are provided (app. 1). These data were used in the interpreta-
tion of the hydrogeologic framework and the GPR records
presented in the following sections.

Geophysical Methods

Borehole geophysical logs collected in seven of the deep
wells or boreholes drilled for this study and more than 27 mi
of GPR line were used to obtain information on the subsur-
face lithology. Interpretations of the data on Coastal Plain
sediments acquired using these methods require a working
knowledge of the local geology and hydrology, and an under-
standing of the application and limitation of the methods used.
Samples of geologic materials also were collected, examined,
and compared with geophysical logs during drilling, and these
data combined with historical drilling logs from locations with
geophysical data provided the basis for extending the inter-



pretation of the geophysical records. The following sections
describe the methods used, technical information related to the
acquisition and interpretation of the geophysical data, and the
limitations of these methods.

Borehole Geophysical Methods

Borehole geophysical logs are commonly used in ground-
water investigations to characterize the subsurface lithology
and to correlate stratigraphy. Qualitative analysis of geophysi-
cal logs for determining lithology involves using a working
knowledge of the local geology while comparing the response
on logs with site-specific information, such as cores or other
formation samples collected during drilling (Keys, 1987).

Geophysical logs (natural gamma, caliper, and various
electric logs including spontaneous potential (VSP), single-
point resistance (spr), and normal resistivity logs of 8-, 16-,
32-, and 64-in. electrode spacing), lithologic logs, and obser-
vations of drilling characteristics were made at six new wells
and one new borehole within the three study basins (app.1).
All of the logs were collected in open, mud-filled boreholes to
depths ranging from about 182 ft to 250 ft, which is generally
at or below the top of the basal clays of the Kirkwood-Cohan-
sey aquifer system. The geophysical logs and lithologic data
collected provided the information required for interpretation
of the lithology at each of the three areas of study.

The geophysical logs were compared in the field with
descriptions of the lithologic samples and with drilling char-
acteristics obtained in a manner that assured, to the greatest
extent possible, the collection of representative data. Geo-
physical log records are interpreted using knowledge of the
local geology and an understanding of the responses of logs
or of suites of logs to various lithologies. Natural gamma logs
typically show higher radiation in clays than in sands and
gravels. VSP logs tend to indicate a more negative electri-
cal potential in sands and gravels than in clays, and spr logs
usually indicate lower resistance in clays than in sands and
gravels. Normal resistivity electric logs typically measure
lower electrical resistivity in clays than in sands and gravels.
Caliper logs simply measure the borehole diameter. Suites of
geophysical logs where large variations in borehole diameter
were identified were analyzed by considering the effects of
variations in diameter on the response of geophysical logs col-
lected in that suite.

The data obtained from the geophysical logs were used
to develop a comprehensive interpretation of the lithology
at each well or borehole to guide the selection of screened
intervals during well construction and provide the basis for
interpreting lithology from other geophysical logs within the
geologic settings typical of each study area. These geophysi-
cal logs were used later to correlate important hydrogeologic
layers throughout the study areas.
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Surface Geophysical Methods

GPR is a surface geophysical method designed to inves-
tigate shallow earth materials using electromagnetic wave
energy (GPR waves) to acquire information about the sub-
surface. GPR surveys were conducted within the McDonalds
Branch, Alberston Brook, and Morses Mill Stream basins to
identify the presence, depth, and extent of the first subsurface
clay layer that might impede the flow of ground water to or
from the streams. The GPR surveys traversed accessible areas,
along sand roads and trails.

The survey was conducted using a MALA GeoScience
RAMAC GPR system equipped with 100 MHz (megahertz)
antenna. The antenna, distance measuring wheel, control unit,
and the computer used for data acquisition and recording are
attached to a sled pulled by the equipment operator. A total
of 27 mi of GPR line were surveyed within the three study
areas. The data were processed using the MALA Geosci-
ence RAMAC GroundVision proprietary software. The GPR
radargram, the image generated from the measured GPR data
(MALA Geoscience, 2003), displays a nearly continuous
image representing the subsurface material beneath the GPR
line. The radargram is an arithmetic graph of distance over the
ground and the travel time of the reflected electromagnetic
waves as they are affected by spatial changes in the conductiv-
ity-associated lithologic variability as the equipment is moved
along the GPR line. The depth of penetration of GPR waves in
relatively low conductivity material, such as sand, is typically
less than 80 ft using a 100 MHz antenna. Highly conductive
materials such as clay will attenuate the GPR waves, such that
no electromagnetic energy is reflected from below the top of
the first clay. As such, shallow clays mask all other geologic
features that may lie beneath.

The depth to the top of a conductive layer, such as clay,
is determined by recording the travel time of a reflected wave
at a representative velocity. The velocity of electromagnetic
wave energy in aquifer sediments was estimated by dividing
the known depth of a reflector (based on lithology from bor-
ings) by the actual travel time of the electromagnetic wave as
measured by the GPR system. The GroundVision software was
used to verify the velocity estimate, and if needed, the velocity
was adjusted so that the depth of a reflector observed on the
radargram matched the depth of the reflector determined from
the boring. Using these methods, the GPR wave velocity of
saturated aquifer sediments in the three study areas was deter-
mined to be about 225 ft per microsecond, a velocity typical of
saturated sand (Peter Joesten, U.S. Geological Survey, written
commun., 2004).

Based on available lithologic data in the vicinity of the
GPR lines and the erosional and depositional features inter-
preted from the GPR records, the extensive conductive layers
identified beneath the GPR lines were interpreted as clay. The
tops of the clays were interpreted on the radargram at a depth
and (or) travel time where electromagnetic wave reflections
cease. Where continuous clays were identified on the GPR
record, the location of the clay along the line of the survey was
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identified by its two endpoints and its approximate mid-point.
At these GPR points, the depth to the top of the clay was
determined from the GPR record, and the altitude of the GPR
point locations was determined from the 10-meter DEM.

Each GPR point was assigned an identifier that consisted
of a four-digit line number followed by a letter suffix. Inter-
pretations of previous GPR surveys in the McDonalds Branch
basin (Pierre Lacombe, U.S. Geological Survey, written com-
mun., 1990) also identified the extent and depth of clays, and
these interpretations were added to the recent GPR data set.
Those points are identified by either a BR (Butterworth Road)
or BP (Butler Place Road) suffix followed by a two-digit line
identifier and a line sequence letter suffix. Sites used in the
development of the hydrogeologic framework model are listed
in table 2.

A total of 273 GPR data points were interpreted in the
three study areas, including 98 in the Albertson Brook, 96 in
McDonalds Branch, and 79 in the Morses Mill study areas.
These data were used to define the altitude and extent of the
tops of the clays and to determine in which hydrogeologic
model layer the individual clays were identified. In addition
these data were used to describe the distribution and range of
textures associated with the near-surface framework model
layers.

The variability and density of the localized shallow
clays revealed by the continuous GPR data, greatly exceeds
the resolution needed for the sub-regional framework mod-
els, which are intended for use in ground-water flow models.
Sixteen representative GPR data points were selected for use
in developing the structure contour maps for the framework
model layers; five in the Albertson Brook study area, seven in
the McDonalds Branch study area, and four in the Morses Mill
Stream study area.

Interpretive Methods

The following sections describe the methods used to
compile a representative hydrogeologic data set, methods used
to interpret and summarize the hydrogeologic and geophysi-
cal data, and the methods used to summarize the interpreta-
tions derived from these data. The interpreted data provided
critical information about the hydrogeologic framework and
the hydraulic and physical parameters needed for the ground-
water flow models. All data derived by these methods are
stored in the hydrogeologic database, available at the USGS
New Jersey Water Science Center.

Database Compilation

Site information extracted from the Ground-Water Site
Inventory (GWSI) database was used to populate a hydro-
geologic framework database. The hydrogeologic database
was prepared in MS Access. The hydrogeologic database is
the repository for lithologic and geophysical data used for
framework interpretation and includes the interpreted values

that represent the tops of aquifers and leaky confining layers
and characteristics of the hydrogeologic framework layers.
The results of the slug test and well performance analysis are
stored in a similar file.

Available well site information— geophysical, lithologic,
and geologic data— were evaluated and compiled from mul-
tiple sources, including the NJDEP, Pinelands Commission,
USGS, U.S. Environmental Protection Agency, well drillers,
well owners, and previous studies. Data of acceptable quality
were processed for analysis and entered into the hydrogeologic
database.

The quality of the lithologic and geophysical data was
evaluated to assure the data were acceptable and representa-
tive. The assessment of data quality is, in part, subjective, but
knowledge and experience of the methods must be employed
to assess data acceptability. For example, a lithologic log
might be considered questionable when descriptions of sedi-
ments do not confirm the data from one or more good quality
geophysical log(s) collected from the same location; an obvi-
ously poor resolution geophysical log might show no response
in a zone where aquifer sediments described in the lithologic
log transition abruptly from sand to a thick clay. Determining
whether logs that contradict widely recognized geologic units,
such as thick regional clay, are representative of the geology
may require considerable scientific judgment.

Geophysical logs were preferred over lithologic logs
because they generally provide reliable and unbiased informa-
tion for interpreting and correlating lithology in Coastal Plain
sediments. Although the descriptive logs of sediments from
borings are useful in understanding lithology, the quality of
available lithologic logs is highly variable, largely because
descriptions of geologic sediments are often prepared by indi-
viduals representing a wide range of experience and interests,
sometimes resulting in confusing descriptions that use vague
or inconsistent terms to describe the observed sediment cut-
tings. Further complications include the difficulties in collect-
ing representative samples of cuttings from hydraulic rotary
drilled boreholes in unconsolidated sediments. Collection of
samples from cuttings requires a thorough knowledge of the
hydraulic rotary drilling process, but the ability to collect rep-
resentative samples demands additional considerations for the
travel time and stratification of cuttings in the mud-filled hole
and the observed drilling characteristics.

New data collected during 2004-05 include geophysical
and lithologic logs obtained from seven deep borings drilled in
the study areas and lithologic logs of borings for five shallow
wells in the McDonalds Branch study area. These data and the
altitudes of the tops of clays interpreted from surface geophys-
ical surveys were included in the hydrogeologic database.

Development of the Hydrogeologic Framework

A geologic data visualization software package called
Rockworks ™ was used to process and analyze hydrogeologic
data and to provide mapping and interpretative tools for the
construction of the hydrogeologic framework models. The



data set includes a site identifier (UID), site location, altitude
of land surface, lithologic descriptions from drilled boreholes,
digital geophysical log data, and interpretations of depths to
tops of shallow clays determined from GPR data.

Geophysical log suites, including natural gamma logs,
electric, and caliper logs (predominantly natural-gamma
logs), were examined with other subsurface lithologic and
geologic information to develop a conceptual model of the
hydrogeologic framework for each Pinelands study area. The
framework models are designed to support the three future
study-area ground-water flow models. The approach used for
preparing the framework models, discussed previously, divides
the Kirkwood-Cohansey aquifer system into aquifer layers and
leaky confining layers that reflect the aquifer systems sub-
regional, structural and depositional characteristics and defines
the range of variability of hydraulic and physical properties
in those layers. The erosional and depositional environments
of the Cohansey Sand, characterized by Carter (1978) and
the Pleistocene age and younger surfical geologic sediments
described by Newell and others (2000) provide valuable infor-
mation that corroborates the apparent discontinuous nature of
the lithology within the Cohansey Sand and the character and
extent of the younger surficial geologic units. The framework
models are intentionally based on the lithologic character
of the sediments to a greater extent than the distribution of
geologic formations because the framework model layers must
support the ground-water flow models, which will represent
the hydrogeologic system. The geologic environments leading
to the deposition and erosion of the surficial sediments that
has been described by previous investigators proved helpful in
understanding and describing the variable lithologic character
of the aquifer system.

Using the conceptual framework models, Rockworks™
was used to view and correlate geophysical and lithologic
data in two-dimensional (2D) vertical sections for multiple
sites with all geologic data presented in relation to a common
datum. Initially, these sections were oriented along and normal
to the recognized formation strike so that the regional dip of
the formation could be considered in the interpretation of the
framework layers. Using various sectional views, additional
correlations were made between adjacent boreholes, the
applicability of the conceptual framework model was con-
firmed, the structure tops of major hydrogeologic layers were
finalized, and their depths were recorded in the hydrogeologic
database. The altitudes of the tops of the hydrogeologic layers
were calculated on the basis of land-surface altitude, rounded
to the nearest foot.

Mapping Hydrogeologic Framework Layers

Structure contour maps of the tops of hydrogeologic lay-
ers, and thickness maps of these layers were prepared for each
of the three study areas using the altitudes determined from
geophysical and lithologic data. The Rockworks ™ surface
modeling software tool was used to create grid models of each
hydrogeologic framework layer. The process involved prepar-
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ing structure contour maps of the tops of the hydrogeologic
layers using the Kriging surface modeling algorithm, which
also generated a comparable grid-based data set. For each
study area, the boundary coordinates assigned to the modeled
hydrogeologic grid layers were located outside the buffer zone
(beyond the study area boundary), which allowed the use of all
available hydrogeologic data in the immediate area surround-
ing the study area. These data, although sparse, improved the
position of the structure contours at the study area boundary
by forcing the edge effects that are commonly associated with
limited, sparsely spaced data, to the fringes of the area of
investigation. The farther outside the study area boundary the
contours are, the more they tend to be of lower accuracy and,
thus for illustrative purposes, all contours were clipped to the
study area boundaries.

Given that the hydrogeologic layers lay one upon another,
the bottom of a layer is the same as the top of the underlying
layer. Thus, the thickness of each hydrogeologic layer was
determined by calculating the difference in altitude between
the modeled top of a layer and the top of the subjacent layer.
The results of these calculations generated a thickness grid
for each layer, and those grids were used to prepare structure
thickness contours using Environmental Systems Research
Institute, Inc., (ESRI) ArcGIS Spatial Analyst.

The extent of a layer is defined by the zero thickness con-
tour generated from the grids. Areas where a layer crops out
were identified as that area between its zero thickness contour
and the position of the zero thickness contour of the overlying
layer. All data used to prepare the structure contours are shown
on the maps presented in appendixes 2 through 4.

In some areas, the results of the contouring process
indicated either considerable stratigraphic variability and (or)
possible questionable geophysical and lithological data or
interpretations. In these cases, data were re-examined with
Rockworks™ using the previously described interpretative
process, hydrogeologic section views were examined to iden-
tify the cause of the observed variations, and interpretations
were adjusted where needed. In a few cases, data determined
to be of poor quality were removed from the data set. Because
of the known stratigraphic variability of the Kirkwood-
Cohansey aquifer system and the scarcity of data in some
areas where the data showed consistency with the depositional
environments described by Carter (1978) and (or) the surfical
sediments described by Newell and others (2000), variability
in the data was accepted as indicative of the degree of geo-
logic variability within the aquifer system.

Hydrogeologic Sections

Hydrogeologic sections were prepared for each study
area from the final three-dimensional hydrogeologic frame-
work model of each study area, which was created in Rock-
works ™ by stacking all of the layer grids. The sections illus-
trate four cross-sectional views for each study area, tracing
point to point through interpreted data points that are located
on the sections by a dashed vertical line. The 10-meter DEM



12 Hydrogeologic Framework in Three Drainage Basins in the New Jersey Pinelands, 2004-06

was used to depict variations in the altitude of the land surface
along the line of section. Gamma logs are shown on the sec-
tions where digital logs were available.

Determination of Aquifer System Properties

The process of constructing the hydrogeologic frame-
work revealed considerable spatial variability in the lithologic
character and, therefore, the hydraulic properties of aquifers
and leaky confining layers within the Kirkwood-Cohansey
aquifer system. The observed local variability of sediment
textures that makeup the prominent hydrogeologic layers,
although consistent with the depositional history of the aquifer
system leaves uncertainty as to the distribution and ranges of
the hydraulic properties within the aquifer system.

Developing an understanding of the spatial variability of
hydraulic properties in the hydrogeologic layers provides a
means of estimating their ability to transmit ground water. To
examine the variability of hydraulic properties in the aquifer
system, estimates of horizontal hydraulic conductivity (K)
were made by analyzing results from well-performance tests.
Hydraulic conductivity describes the rate at which ground
water will move through porous media in a unit time at a unit
hydraulic gradient through a cross-sectional area measured at
right angles to the direction of ground-water flow (Lohman,
1972). Slug tests were performed to determine K at the loca-
tion of 16 monitoring wells. In addition, short-term well-
performance test data from 136 wells in the three study areas
were analyzed to estimate K. These methods are described in
the following sections.

In addition to the K values estimated from the two types
of well tests, sediment textures reported on lithologic logs
and interpreted from geophysical data for each hydrogeologic
layer represent the distribution and range of textures in these
layers and, therefore, the variability of aquifer system proper-
ties. The approach used to interpret these data is described in
“Estimation of Spatial Variability of Aquifer System Proper-
ties”.

Slug-Test Methods

Slug tests were performed on 16 new wells by using
either the air slug (Greene and Shapiro, 1995) or solid slug
displacement methods. Air slugs were used for 14 wells where
the screen was sufficiently submerged to allow air pressure to
displace enough water to produce a reliable test without the
risk of the air escaping through the screened interval. The air
pressure was used to displace a proportional column of water
from the well. Typically, the headspace in the well above the
water was pressurized to about 5 to 7 Ib/in? (11.5-16.2 ft of
water). The pressure head was allowed to stabilize to assure
there were no air leaks in the slug testing apparatus or well
casing. Once the pressure had stabilized, the test was started
by instantly releasing the pressure in the well to the atmo-
sphere and simultaneously starting to record the water-level
changes. Water-levels were recorded until they had stabilized

at or near the initial level prior to pressurization, at which time
the test was complete. At least two tests were run on each well.

The air slug method could not be used to create displace-
ment in 4 of the 16 wells because the water table was too close
to the screened interval. For these wells, a solid slug was used
to displace an equivalent column of water from the well. At
least two tests were run on each of these wells. The first of
these, a falling head test, was run by quickly inserting the slug
to a fixed depth and, at that instant, the test and the water-level
recording was begun. Once the water level had fallen and
stabilized at the initial level, the test was complete. Next, a
rising head test was started by instantly removing the slug and
starting the water-level recording. The rising water level was
recorded until it had recovered to the initial level.

Water levels before/during/after the slug tests were
recorded using a submersible data logger equipped with a
pressure transducer. The data loggers were set to record water
levels in log time, beginning with a time interval of three-
tenths of a second. The water-level records were examined in
the field for quality assurance and to determine whether the
test was suitable for analysis.

Slug-Test Analysis

Water-level responses from slug tests were plotted in rela-
tion to time to determine characteristics needed to calculate K.
The start time of the test and the initial static water level were
identified from these plots. Typically, the start of the test was
considered to be the time of the maximum displacement from
the static water level. Time series data prior to initial displace-
ment were removed from the record, and the time data were
adjusted by subtracting the new start time from the remaining
time data. In some cases the fully recovered water level at the
end of the slug test deviated from the initial static water-level
measurement by + 0.02 ft. In these cases, the final water level
was selected as the initial static water level when carrying out
the slug test analysis.

The initial water displacement for air slug tests was
defined as the maximum displacement from the static water
level. In the case of solid slug displacement tests, early-time
noise or oscillations were assumed to be caused by surging
induced by rapid insertion or removal of the solid slug and not
by the aquifer properties. The maximum displacement, in this
case, was not considered to be the initial displacement from
the static water level, but instead the initial displacement was
defined as the onset of a smooth recovery.

Saturated aquifer thickness is a required parameter for
each of the methods used for analysis. The total thickness of
a layer was determined from the final interpreted framework
thickness at each slug test well location. For the deep wells
in a confined or semi-confined aquifer layer, where the layer
is fully saturated, saturated thickness is equal to the total
thickness of the aquifer layer. For shallow unconfined wells,
the framework layer may be only partially saturated. In these
cases, the thickness of the saturated part of the aquifer layer
was used in the analysis.



Hydraulic conductivity for each well tested was deter-
mined by analyzing the water-level responses from slug tests.
Data from tests at the 16 new wells were analyzed using two
analytical methods in the AQTESOLV™ analytical software
package, which contains several analytical solutions for slug-
test analysis. Both methods involve the graphical matching of
theoretical type curves to plots of the water-level response in
relation to time. The method of Springer and Gelhar (1991),
which is well suited for unconfined formations with highly
transmissive zones prone to inertial oscillations, was effec-
tive in analyzing the slug test data from four wells screened
in unconfined aquifer layers. The method of Butler (1998),
which is also effective for analyzing test results for wells in
highly transmissive zones, was used to analyze data from 12
wells screened in confined or semi-confined aquifers. Both
test methods are appropriate for fully or partially penetrating
wells.

In both the Springer-Gelhar (1991) and Butler (1998)
slug-test analytical methods, the aquifer is assumed to be infi-
nite in areal extent, homogeneous, isotropic, and of uniform
thickness; the potentiometric surface of the aquifer is initially
horizontal, and flow is steady. The air or solid slug equivalent
column of water is injected or discharged from the well instan-
taneously. Horizontal hydraulic conductivities calculated using
these methods can be assumed to represent the aquifer only
in the vicinity of the screened interval. The Butler method is
a modification of the Hvorslev method (1951). The Springer-
Gelhar method is a modification of the method of Bouwer and
Rice (1976); modifications include treatment for oscillatory
responses. A summary of the test details and the estimated
horizontal hydraulic conductivities are given in table 3.

Well-Performance Tests

Water-transmitting properties of aquifers can be estimated
from well-performance tests, such as tests commonly con-
ducted to determine the specific capacity of a well. Specific
capacity is a measure of the productivity of a well and is cal-
culated as the pumping rate divided by the resulting drawdown
after the well is pumped at the same rate for some period of
time (Freeze and Cherry, 1979). Reported well-performance
data for 136 wells in the three study areas were retreived from
the USGS GWSI database for the purpose of estimating values
of hydraulic conductivity.

Values of aquifer transmissivity can be estimated from
specific capacity data if the duration of the withdrawal and the
well radius are known, assuming that effects of partial penetra-
tion, well loss, hydrologic boundaries, and well development
are all negligible. Walton (1970, p. 315) presents the follow-
ing equation to estimate aquifer transmissivity from specific
capacity data:

< (1
264log { } 65.5
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where

= specific capacity [(gallon/minute)/feet],
discharge (gallon/minute),

drawdown (feet),

transmissivity [(gallon/day)/feet],
storage coefficient (dimensionless),
well radius (feet), and

= time after pumping started (minutes).

r

~ SN Q=
I

Hydraulic conductivity can then be estimated from the trans-
missivity value as:

K=T/b, 2)
where
K = estimated hydraulic conductivity (feet/
day),
T = aquifer transmissivity (feet*day), and
b = aquifer thickness (feet).

In addition to specific capacity data for the 136 wells,
reported pumping duration, depths to the top and bottom of
open intervals, and well radius were used in applying equa-
tions (1) and (2). The practical application of equation (1)
requires an assumption regarding the storage coefficient. A
storage coefficient of 0.15 was assumed. This value is con-
sistent with the range of specific yield values for unconfined
aquifers presented by Freeze and Cherry (1979) and with
that for the Kirkwood-Cohansey aquifer system presented
by Rhodehamel (1973). Other important assumptions used
in the calculation are that the effects of partial penetration,
well loss, and hydrologic boundaries, as well as the effects of
well development on the effective well radius are all negli-
gible. The effects of partial penetration are uncertain because
the partial volume of the aquifer that is stressed during these
reported tests is unknown. This is because the reported pump-
ing rate and (or) duration may be insufficient to stress the full
thickness of the aquifer. An implicit assumption of the method
selected for the application of equation (2) is that the thickness
of the aquifer strata (b) stressed during the test is equivalent
to the length of the screened interval of the well. The relations
between the input variables and the estimated transmissivity
values also were examined, and a determination was made that
the estimated transmissivity values were only slightly affected
by the pumping rate, duration, or total pumped volume.

The effects of well loss and the presence of impermeable
boundaries (such as production zone pinch-out) could result
in a tendency to underestimate transmissivity. The effects of
the presence of recharge boundaries (such as nearby streams)
and well development could result in a tendency to overesti-
mate transmissivity. The net effect of these uncertainties and
assumptions could result in either an over- or underestimation
of transmissivity at a particular site. Results obtained using
equations (1) and (2) can provide some indication of the likely
range of hydraulic conductivities of water-bearing strata and a
general indication of the spatial distribution of hydraulic con-
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ductivity in the study areas. Horizontal hydraulic conductivi-
ties estimated using well-performance data are listed in table 4
(at end of report).

Estimation of Spatial Variability of Aquifer
System Properties

The distribution and range of aquifer system properties
within each hydrogeologic layer was estimated at a coarse
scale by characterizing sediment textures on the basis of the
range of grain sizes reported on lithologic logs and by estimat-
ing grain size from geophysical data. These data indicate that
within the aquifers and the leaky confining layers, lithology
can vary considerably. To illustrate this variability, sediment
textures were categorized into five ranges of sand content
using the approach described below.

A description of the spatial variability of aquifer system
properties was limited to the estimation of sediment tex-
tures as a percentage of non-clay content (“sand content” or
“percent sand”). Percent sand was described at locations and
depth intervals that represent each of the framework layers
penetrated by a borehole or well. This approach was limited
because it did not allow for differentiating possible ranges of
gravel or sand grain sizes and resulted in low percent sand
values that simply indicate high clay content.

The percent sand values were estimated as the percent-
age of a framework model layer thickness that is attributable
to the permeable sediment fraction, using the description from
a lithologic log and (or) the interpretation of geophysical data
at a specific location. Geophysical logs were interpreted using
methods described previously, and lithologic logs (drillers
or geologists logs) were evaluated in part by interpreting the
written log and by relying on the knowledge of how litho-
logic logs compare with geophysical logs interpreted at other
locations within the study area. Percent sand values also were
estimated from GPR records, but these values are limited
to representing only that thickness of permeable sediments
between the top of the framework layer that overlies the
interpreted clay and the top of the clay. In this case the actual
clay thickness is unknown (see previous GPR discussion in
“Geophysical Methods”); thus, the percent sand values may
be underestimated. Where the GPR records indicate that a
specific layer of the framework model layer contains no clay,
percent sand values are correctly stated as mostly sand.

The estimated percent sand values of hydrogeologic lay-
ers were illustrated by preparing a data grid using the inverse
distance statistical method in Rockworks™ . ESRI ArcGIS
Spatial Analyst was then used to classify the sand content of
the hydrogeologic layers into five categories, ranging from
mostly sand (80 to 100 percent sand) to mostly clay (0 to 20
percent sand).

Although it is widely recognized that grain size distribu-
tion and hydraulic conductivity are related (Freeze and Cherry,
1979), attempts to correlate K values from the results of
slug-test analyses with the percent sand values were unsuc-

cessful because textures were estimated at a coarse scale using
lithologic logs and geophysical data. Grain size distribution
from sieve analysis could have improved the correlation, but
that approach was beyond the scope of this study. In addition
the depth intervals commonly were not comparable because
the textures represent the entire framework layer thickness,
whereas the well-screen intervals were rarely equal to the
thickness of the hydrogeologic layers at the well locations.

Hydrogeologic Framework

For each study area, the Kirkwood-Cohansey aquifer
system, which Zapecza (1989) describes as a single hydrogeo-
logic layer, was subdivided into seven layers characterized by
their predominant grain size textures as aquifers or leaky con-
fining layers. These layers were defined through spatial com-
parisons of the new geophysical and lithologic data (app.1)
and similar available data for the vicinity of each study area.
The hydrogeologic framework modeling process described in
“Development of the Hydrogeologic Framework™ produced
three similar but distinctly separate framework models, each
one unique to a particular study area. The models, one for each
of the three study areas, are described and illustrated in the
following sections.

Many hydrogeologic sections were used to the develop
the framework models. Twelve sections (four for each study
area) were generated to illustrate the framework layers. The
sections trace from data point to data point along lines of
section, slicing through their associated three-dimensional
hydrogeologic framework model to show the relation of the
modeled layers to each other and to the land surface. Where
available, gamma logs were included to show the distribu-
tion of sediment textures and the extent of the sands and clays
associated with the leaky confining layers.

As discussed previously, the base of the Kirkwood-
Cohansey aquifer system for this study is generally repre-
sented by the two different regional basal surfaces described
by Zapecza (1989). In the western part of the aquifer system,
beneath the Albertson Brook and McDonalds Branch study
areas, the base of the aquifer system is the extensive basal clay
bed in the lower part of Kirkwood Formation. Although no
attempt was made to correlate the basal clay layers between
these two study areas, the similarity of altitude of the basal
clays to the basal clay described by Zapecza (1989) indicates
this basal layer is common to both study areas. Beneath the
Morses Mill Stream study area, the base of the aquifer system
described previously in the “Hydrogeologic Setting” section is
the thick diatomaceous clay, a locally extensive confining bed
in the upper part of the Kirkwood Formation.

On the basis of new geophysical data collected for this
study, the top of the basal clays in some parts of the study
areas are represented by a geologic contact that grades from
coarse- to fine-grained sediments over as much as tens of



ft. In these cases gamma and electric logs may represent the
contact differently because of the composition of the geologic
material. Electric logs were usually preferred over gamma logs
because, generally, they represented the hydrologically signifi-
cant top of the basal clay bed more accurately than the gamma
logs. As a result of additional geophysical and lithological data
collected during this study, some of these interpretations may
differ from those of Zapecza (1989).

The deeper hydrogeologic framework layers tend to dip
to the southeast and generally conform to the slope of the
top of the basal clay in the Albertson Brook and McDonalds
Branch study areas. The deeper layers appear to dip to the
southeast and conform to the slope of the diatomaceous clay
in the Morses Mill Stream study area. The dip of the overly-
ing layers decreases slightly where the layers are closer to the
land surface. The tops of the shallower layers generally follow
the slope of the drainage basins, more than the deeper layers,
reflecting a closer relation to the erosion-incised valleys form-
ing those basins.

With the exception of the basal clay confining beds, the
variable and discontinuous nature of clays within the Kirk-
wood-Cohansey aquifer system was apparent in the geophysi-
cal and lithologic records. Low permeability layers appear
to be more closely spaced and the presence of discontinuous
clays generally more common, in the upper part of the aquifer
system, which is principally represented by the Cohansey
Sand. The increased presence of clays in this part of the
aquifer system is consistent with the depositional environment
of the Cohansey Sand, a sequence of regressive barrier and
barrier protected deposits that form discontinuous layers of
sand, silt, and clay (Carter 1978). In many areas the Cohansey
Sand is capped by the Bridgeton Formation, Pleistocene ter-
races, and (or) younger near-stream deposits. This study treats
these surficial geologic sediments as a hydraulically connected
part of the upper-most framework model layers that exist in
those areas. The hydraulic properties of these surficial deposits
were integrated into the framework analysis by considering
their depositional environment described by Newell and oth-
ers (2000) and Carter (1978) while characterizing variations
in sediment textures observed in geophysical and lithologic
records.

The tops of clays interpreted from GPR data recorded at
selected locations illustrate the full linear extent or absence of
clays lying beneath the GPR survey lines. Estimation of the
depths to the tops of clays was limited by the presence of the
first clay or the practical depth investigated by the equipment
used, which was generally less than 80 ft. In areas where the
first clay obscured all underlying sediments, no GPR data are
available to define the presence or extent of the underlying
clays. Altitudes of the clay tops determined from GPR data
were compared with the framework model, and the hydrogeo-
logic framework model layer within which the clays lie was
determined. Although clays were commonly identified in the
leaky confining layers, in all study areas, some clay layers
were found to lie within the aquifer layers.

Hydrogeologic Framework 17

Although the Kirkwood-Cohansey aquifer system
generally has been considered a water-table aquifer in most
areas, localized clays within the aquifers and the relative
effectiveness of the leaky confining layers may impede the
flow of ground water in varying amounts, depending on the
effectiveness of confinement and the duration and magnitude
of the hydraulic stresses applied. The available data indicate
considerable variation in sediment textures in the hydrogeo-
logic layers; the lack of sufficient available data limits the
extent to which these variations can be interpreted. Estimates
of hydraulic conductivity derived from slug tests and well-
performance tests at previously installed wells (tables 3 and 4)
and a general understanding of the distribution and range of
textures throughout the thickness of the hydrogeologic layers
provides additional information for understanding the spatial
distribution of aquifer system properties within and among the
modeled layers.

Site information for wells that were used to determine
hydraulic conductivity are listed in table 2 by data type code:
ST for wells with slug-test data, and WP for wells with well-
performance data. Slug tests were conducted in relatively
low-yielding, small-diameter wells with short screen intervals
(figs. 3-5); for these wells, K values represent point values
for specific aquifer layers. Some wells used to estimate K
from well-performance tests were of high capacity, have
long screened intervals that penetrate leaky confining layer
boundaries, and are open to multiple layers of the framework.
In these cases, the K values represent multiple hydrogeologic
framework model layers of the aquifer system. The hydrogeo-
logic layers penetrated by the well screens are identified in
table 4. The mean hydraulic conductivity values determined
from various well tests in the three study areas ranged from
84 to 130 ft/d. The estimated K values from well tests are
consistent with those reported by Rhodehamel (1973) for the
Kirkwood-Cohansey aquifer system, which ranged from 90 to
130 ft/d in the general vicinity of the study areas. K values for
the study areas are discussed in the following sections.

Hydrogeology of Albertson Brook Study Area
and Vicinity

The base of the Kirkwood-Cohansey aquifer system in
the vicinity of the Albertson Brook study area (fig. 2) is the
regionally extensive basal clay bed in the lower part of the
Kirkwood Formation (Zapecza, 1989). In this area, the Kirk-
wood-Cohansey aquifer system is composed of sand, gravel,
and clay that typically grade to fine sand, silt, and clay near
the base of the aquifer system, forming a gradational contact
with the basal clay confining bed.

The Albertson Brook study area lies at the approximate
southern limits of the Central Uplands described by Newell
and others, (2000). From this area to the south, the upper delta
plain deposits of the Miocene Bridgeton Formation overlie the
Cohansey Sand with an unconformable contact. The Bridgeton
Formation is generally a coarse-grained fluvial deposit,
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Figure 3. Location of wells with horizontal hydraulic-conductivity data, Albertson Brook study area and vicinity, New Jersey Pinelands.
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with numerous channel bars forming the higher topographic
features within the study area. In the areas flanking the drain-
ages, the Bridgeton Formation is absent where downcutting of
stream valleys has exposed the Cohansey Sand. In these areas,
Pleistocene to Holocene age deposits commonly are pres-

ent near the streams and swamps. The shallowest framework
layers consist of the surficial geologic sediments described by
Newell and others (2000). Depending on location, the upper-
most hydrogeologic layers may consist of highly permeable
sediments of the Bridgeton Formation and (or) the sediments
of the Cohansey Sand, which are capped locally with Pleisto-
cene to Holocene age deposits.

The upper tributaries of the Albertson Brook basin drain
from the upper delta plain deposits of the Bridgeton Forma-
tion northeast of the Egg Harbor River basin (not shown). In
the lower part of the Albertson Brook basin, Pleistocene age
terraces, and slope and valley deposits of the Central Uplands
border the stream channel where the Albertson Brook drains
to the Mullica River and Atlantic coast (Newell and others,
2000).

Soils in the Albertson Brook study area are generally
well-drained sandy loams and loamy sands with a moderate to
rapid permeability; permeability is reduced in areas of shallow
water table, where hydric soils are present and where muck
soils are common in the areas of streams and swamps (Mark-
ley, 1965).

The hydrogeologic framework of the Albertson Brook
study area is represented by four aquifer layers separated by
three leaky confining layers and a basal confining layer gener-
ally represented by the basal clay bed in the lower part of the
Kirkwood Formation described by Zapecza (1989). The fol-
lowing list describes the hydrogeologic framework layers for
the Albertson Brook study area and presents their identifiers.

Description of the hydrogeologic frame-

Layer identifier work of the Albertson Brook study area

AB A-1 Upper aquifer - upper layer
AB A-1C1 Upper leaky confining layer
AB A-1B Upper aquifer - lower layer
AB C-1 Middle leaky confining layer
AB A-2 Middle aquifer

AB C-2 Lower leaky confining layer
AB A-3 Lower aquifer

AB C-3 Lower Kirkwood basal clay

The location of the 57 sites including wells and selected
GPR data points used to describe the hydrogeologic frame-

work for the Albertson Brook study area are shown in figure 6.

Detailed site information is provided in table 2. The altitudes
of the tops of the hydrogeologic layers in the Albertson Brook
study area and vicinity are listed in table 5.
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Four hydrogeologic sections (A-A', B-B', C-C', and
D-D') were generated from geophysical and lithological data
for selected well and borehole sites (table 2) in the Albertson
Brook study area. The location of these sections are shown
in figure 7. Two sections, A-A' and B-B', (figs. 8 and 9) trace
from site to site, slicing through the framework model from
the southeast and following the general orientation of the
drainage basin and the direction of the regional dip of Coastal
Plain sediments. The two other sections, C-C' and D-D', (figs.
10 and 11) cross the basin normal to the southeast trending
sections. The distribution of fine-textured sediments illustrated
by the gamma logs indicates the variable nature of the sands
and clays associated with the framework layers.

Structure contours were prepared from the altitudes of
the tops of seven of the hydrogeologic layers listed in table
5 using methods described previously. A contour map was
not prepared for the top or the AB A-1 layer because, where
the layer exists, it is the same as the land surface and is
best described by the 10-meter DEM. Thickness maps were
prepared for seven of the hydrogeologic layers, but none was
prepared for the lower Kirkwood confining layer, AB C-3,
because the thickness of this layer was not investigated during
this study. (See Zapecza, 1989, pl. 23.) The distribution and
range of textures estimated for the hydrogeologic layers are
shown on the thickness maps. In addition, K values represent-
ing individual framework layers are shown on their respective
thickness maps so that the distribution of K and the textures
can be compared. K values estimated from well-performance
tests (table 4) in the Albertson Brook basin ranged from
11 ft/day to 608 ft/day, and the average K was 130 ft/day. The
structure contour and thickness maps are presented in appen-
dix 2-1 through 2-14.

The results of the GPR surveys in the Albertson Brook
study area (fig. 12) confirm the variabilty of the altitude of
the tops of clays near the Albertson Brook stream. In the areas
investigated in the upper part of the basin, GPR records indi-
cated relatively few places where coarse sediments in any one
hydrogeologic layer are continuous down to the top of the AB
C-1 leaky confining layer. In this area a continuous clay prin-
cipally associated with the AB A-1C1 leaky confining layer
was identified (fig. 12). The AB A-1 aquifer layer obscured all
underlying sediments in a few areas, and the AB A-1C1 layer
obscured the other layers below. GPR records also indicate the
presence of erosional and depositional features in several areas
where sloping bedding planes were revealed in the coarse-
grained media, and (or) the tops of clays appear to be sloping,
truncated, or absent. These conditions appear to be more com-
mon in the lower (eastern) part of the Albertson Brook basin
where fewer clays were identified near Albertson Brook than
in the upper part of the basin. Given the depositional history of
the Cohansey Sand, it is also possible that some clays simply
represent discontinuous lenses that are eroded to the slope of
the drainage basin and may not be remnants of a single layer.
For the purpose of the framework model, however, these clays
are considered to represent one leaky confining layer of low
permeability sediments.
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Hydrogeology of McDonalds Branch Study Area
and Vicinity

The base of the Kirkwood-Cohansey aquifer system in the
vicinity of the McDonalds Branch study area is the regionally
extensive basal clay bed in the lower part of the Kirkwood
Formation (Zapecza, 1989). This is the same basal confin-
ing bed as that described previously for the Albertson Brook
study area; this determination is based on a comparison of the
altitude of the top of this basal clay unit with that of Zapecza
(1989). As in the Albertson Brook basin, the sands, gravels,
and clays in the upper layers of the Kirkwood-Cohansey
aquifer system grade to fine sand and eventually silts and
clays near the base, forming a gradational contact with the
basal clay bed in the lower part of the Kirkwood Formation
(Zapecza, 1989; fig. 2).

The McDonalds Branch study area lies within the
Central Uplands of the Coastal Plain. In this area, the heavily
weathered and eroded upper surface of the Cohansey Sand is
capped mostly with Quaternary terraces formed in extensively
variable depositional environments. The present day physio-
graphic features depict highly dissected terraces flanked by
slope deposits and broad, low gradient valleys covered with
sands and gravels eroded from nearby deposits (Newell and
others, 2000). Surficial geologic maps by Newell and others
(2000) illustrate localized exposures of the Cohansey Sand in
the upper part of the McDonalds Branch basin. Pleistocene to
Holocene age swamp deposits lie along the stream channels
throughout most of the basin. The shallowest hydrogeologic
framework layers consist of sediments of the surficial geol-
ogy described by Newell and others (2000). These layers,
depending on location, may contain clay and highly permeable
sediments eroded from the Quaternary age terrace and slope
deposits that cap much of the Cohansey Sand in this area,
the Holocene to Pleistocene age deposits that are found near
the streams and swamps, or sediments of the Cohansey Sand
where it is exposed in the upper part of the drainage basin.

The headwaters of the McDonalds Branch basin lies on
the western slope of the basin divide between the Delaware
River and Atlantic Coast basins (not shown). The McDonalds
Branch stream winds through an eroded westerly trending
valley that drains to the Delaware River through the Rancocas
Creek. Soils in the McDonalds Branch basin are principally
well-drained deep or loamy sands except where hydric soils
are present in areas where the water table is shallow and where
muck is present in the vicinity of the swamps and streams
(Lord and others, 1990).

The hydrogeologic framework of the McDonalds Branch
study area is represented by four aquifer layers separated by
three leaky confining layers and a basal confining layer gener-
ally represented by the clay confining bed in the lower part of
the Kirkwood Formation described by Zapecza (1989). The
following list describes the hydrogeologic framework layers
for the McDonalds Branch study area and presents their identi-
fiers.

Description of the hydrogeologic frame-

Layer identifier work of the McDonalds Branch study area

MB A-1 Upper aquifer - upper layer
MB A-1C1 Upper - leaky confining layer
MB A-1B Upper aquifer - lower layer
MB C-1 Middle leaky confining layer
MB A-2 Middle aquifer

MB C-2 Lower leaky confining layer
MB A-3 Lower aquifer

MB C-3 Lower Kirkwood basal clay

The locations of the 45 sites used to describe the hydro-
geologic framework for the McDonalds Branch study area
are shown in figure 13. Sites include wells, boreholes, and
selected GPR data points. Detailed site information is pro-
vided in table 2. The altitudes of the tops of the hydrogeologic
layers for the McDonalds Branch study area and vicinity are
listed in table 6.

Four hydrogeologic sections (A-A', B-B', C-C', and D-D")
were prepared from selected sites (table 2) for the McDonalds
Branch study area. The locations of these sections are shown
in figure 14. Section A-A' (fig. 15) traces from site to site
northwest to the southeast, following the orientation of the
drainage basin in the direction of the regional dip of Coastal
Plain sediments. Section A-A' slices through the framework
model showing the regional dip of the hydrogeologic layers
and the land-surface altitude sloping toward the northwest
away from the divide between the Delaware River and Atlan-
tic Coastal basins (not shown). A 55-ft-thick medium-density
clay is represented by MB C-2 a leaky confining layer at the
location of well 051074. Locally, this clay is a substantial
barrier to vertical ground-water flow that is absent at nearby
well 051560 about 2 mi to the northwest, thus illustrating the
discontinuity of thick clay layers typical of the Kirkwood-
Cohansey aquifer system.

Three hydrogeologic sections, B-B', C-C', and D-D' (figs.
16, 17, and 18 respectively) are positioned approximately
normal to section A-A' and cross the basin from southwest to
northeast (fig. 14). These sections show that layer MB C-2
thickens toward the southeast. The shallow layers are deeply
incised and absent in many areas in the lower part of the basin
as a result of downcutting that also broadened the stream val-
leys toward the northwest. The distribution of fine-textured
sediments illustrated by the gamma logs indicates the variable
nature of the sands and clays associated with the framework
layers.

Structure contours were prepared from the altitudes of
the tops of seven of the hydrogeologic layers listed in table 6
using methods described previously. A contour map was not
prepared for the top or the MB A-1 layer because it is the same
as the land surface and is best described by the 10-meter DEM
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EXPLANATION

Location of well or borehole shown in
hydrogeologic section. Number is
U.S. Geological Survey well number (UID)

McDonalds Branch

GAMMA LOG

RADIATION INCREASES
o

Hydrogeologic framework of the Kirkwood-Cohansey
aquifer system in the McDonalds Branch study area.

Layer Description

MB A-1 Upper aquifer - upper layer

MB A-1C1 Upper leaky - confining layer
MB A-1B Upper aquifer - lower layer

MB C-1 Middle leaky - confining layer
MB A-2 Middle aquifer

MB C-2 Lower leaky - confining layer
MB A-3 Lower aquifer

MB C-3 Lower Kirkwood - confining layer
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EXPLANATION

050691 Location of well or borehole shown in GAMMA LOG

hydrogeologic section. Number is RADIATION INCREASES
U.S. Geological Survey well number (UID)

MB McDonalds Branch

Hydrogeologic framework of the Kirkwood-Cohansey
aquifer system in the McDonalds Branch study area.

Layer Description

MB A-1 Upper aquifer - upper layer

MB A-1C1 Upper leaky - confining layer
MB A-1B Upper aquifer - lower layer

MB C-1 Middle leaky - confining layer
MB A-2 Middle aquifer

MB C-2 Lower leaky - confining layer
MB A-3 Lower aquifer

MB C-3 Lower Kirkwood - confining layer

Figure 16. Hydrogeologic section B-B’, McDonalds Branch study area and vicinity, New Jersey Pinelands. (Line of section shown on
figure 14.)
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Layer Description
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Figure 18. Hydrogeologic section D-D’, McDonalds Branch study area and vicinity, New Jersey Pinelands. (Line of section shown on
figure 14.)



pared for seven hydrogeologic layers, but none was prepared
for the lower Kirkwood confining layer, MB C-3, because the
thickness of this layer was not investigated during this study.
(See Zapecza, 1989.) The distribution and range of grain
textures estimated for the hydrogeologic layers are shown on
the thickness maps. In addition, those K values that repre-
sent individual framework layers (table 4) are shown on their
respective thickness maps so that the distribution of K and the
textures can be compared. K values estimated from well tests
(table 4) in the McDonalds Branch basin ranged from 8 ft/day
to 269 ft/day, and the average K was 98 ft/day.The structure
contour and thickness maps are presented in appendix 3.

The results of the GPR surveys in the McDonalds Branch
study area (fig. 19) confirm the differences in the altitudes of
clay surfaces near the McDonalds Branch stream valley. In the
areas investigated in the upper part of the basin, GPR records
indicated an arealy extensive but discontinuous clay princi-
pally associated with the MB A-1C1 leaky confining layer.
The top of this clay slopes gently with the shallow stream
valley from the upper basin toward the northwest. Because of
the slope and apparent discontinuity of this layer it could also
represent various overlapping clays that have been eroded to
the gradient of the valley. Shallower clays also were identified
in the overlying MB A-1 aquifer layer in the upper part of the
basin, but this layer is principally sand in most areas, allowing
the GPR to penetrate to the deeper layers. Where shallow clays
did not obscure the MB C-1 leaky confining layer, only a lim-
ited number of MB C-1 clays were identified by GPR surveys.
In these areas, overlying sediments and possibly the upper
part of the MB C-1 leaky confining layer is composed largely
of coarse-grained sediments. Because the Cohansey Sand is
exposed in this area, the observed discontinuity of clays most
likely conforms to the depositional environment of the Cohan-
sey Sand described by Carter (1978). In the lower part of the
basin, GPR records identified the first clay in the MB A-1B
aquifer layer over an extensive area. This area forms a low
basin divide that is outside the main valley associated with the
McDonalds Branch stream, where sediments may have been
more resistant to weathering leaving the clay intact.

Hydrogeology of Morses Mill Stream Study Area
and Vicinity

In the Morses Mill Stream study area, the basal confining
layer of the Kirkwood-Cohansey aquifer system is the thick
diatomaceous clay (fig. 2) that forms an extensive confining
bed in the upper part of the Kirkwood Formation dividing the
Kirkwood Formation into upper and lower sands. The esti-
mated updip extent of this clay subcrops about 8 mi west of
the Morses Mill Stream study area, which indicates either an
abrupt change from sand to clay or that the clay was truncated
(Zapecza, 1989). From its estimated updip edge, the diatoma-
ceous clay thickens to as much as 200 ft in the vicinity of the
study area (Zapecza, 1989, pl. 22-c), isolating the lower part of
the Kirkwood Formation beneath it that is referred to locally

Hydrogeologic Framework a

as the Atlantic City 800-foot sand. The Atlantic City 800-foot
sand is considered an artesian aquifer in this area, whereas the
overlying the Kirkwood-Cohansey aquifer system is con-
sidered unconfined or, locally, a semi-artesian aquifer. The
Kirkwood-Cohansey aquifer system overlying the diatoma-
ceous clay is the focus of this study in the Morses Mill Stream
study area.

The Kirkwood-Cohansey aquifer system in the Morses
Mill study area is composed of sand, gravel, and clay that
grade to fine sand, silt, and clay near the base of the aquifer
system. Clays, although varying in extent and thickness, are
most common in the upper part of the aquifer system probably
as a result of the depositional environment of the Cohansey
Sand. Many coarse-grained zones are distributed throughout
the thickness of the aquifer system, but generally they lie well
above the gradational contact with the basal diatomaceous
clay. The surficial geology in the Morses Mill Stream study
area is similar to that of Albertson Brook study area, as they
both straddle the northern limits of the Bridgeton Formation
deposits. Surficial geologic maps by Newell and others (2000)
indicate that erosion has exposed the Cohansey Sand in some
areas surrounding the Morses Mill Stream and its tributaries.
Pleistocene to Holocene age swamp deposits have been identi-
fied as overlying the Cohansey Sand in the immediate vicinity
of the stream channels. In the upper reaches of the basin, these
deposits appear to lie directly on the weathered Bridgeton
Formation. At the downstream limits of the study area, the
Morses Mill Stream drains through a shallow valley eroded
through Pleistocene age deposits of the Cape May Formation
(Newell and others, 2000). Accordingly the shallowest hydro-
geologic layers, depending on location, may contain any of the
sediments that make up the surficial deposits within the study
area. Soils in the Morses Mill Stream study area generally are
moderately well-drained loamy sands with muck soils in the
immediate vicinity of swamps and streams (Johnson, 1978).

The hydrogeologic framework of the Morses Mill Stream
study area is represented by four aquifer layers separated by
three leaky confining layers. The base of the hydrogeologic
framework in the vicinity of the study area is the thick diato-
maceous clay in the upper part of the Kirkwood Formation
(Zapecza,1989). The following list describes the hydrogeo-
logic framework layers for the Morses Mill Stream study area
and presents their identifiers.
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Branch study area and vicinity, New Jersey Pinelands.



Description of the hydrogeologic frame-

Layer identifier work of the Morses Mill Stream study area

MM A-1 Upper aquifer - upper layer

MM A-1C1 Upper - leaky confining layer

MM A1B Upper aquifer - lower layer

MM C-1 Middle leaky confining layer

MM A-2 Middle aquifer

MM C-2 Lower leaky confining layer

MM A-3 Lower aquifer

MM C-3 Upper Kirkwood, Diatomaceous clay

The locations of the 63 sites used to describe the hydro-
geologic framework for the Morses Mill Stream study area are
shown in figure 20. Sites include wells and selected GPR data
points. Detailed site information is provided in table 2. The
altitudes of the tops of the hydrogeologic layers for the Morses
Mill Stream study area and vicinity are listed in table 7.

Four hydrogeologic sections (A-A', B-B', C-C', and D-D")
were prepared from selected sites (table 2) for the Morses
Mill study area. The locations of these sections are shown in
figure 21. Two sections, A-A' and B-B' (figs. 22 and 23), trace
from site to site slicing through the framework model, in a
southeasterly direction normal to the orientation of the drain-
age basin and in the general direction of the regional dip of
Coastal Plain sediments. The two other sections C-C' and D-D'
(figs. 24 and 25) lie along with the general orientation of the
Morses Mill Stream drainage basin normal to sections A-A'
and B-B'. The limited number of geophysial logs available
in the vicinity of the Morses Mill Stream study area required
a greater reliance on lithologic data than in the other study
areas; the geophysical logs illustrated on the sections, although
of good quality, tend to be localized within the drainage basin.
The distribution of fine-textured sediments illustrated by the
gamma logs indicate the variable nature of the sands and clays
associated with the framework layers.

Structure contours were prepared from the altitudes of the
tops of seven of the hydrogeologic layers at locations listed in
table 7 using the methods described previously. A contour map
was not prepared for the top or the MM A-1 layer because it
is the same as the land surface where the layer exists and is
best described by the 10-meter DEM. Thickness maps also
were prepared for seven hydrogeologic layers, but none was
prepared for the upper Kirkwood confining layer MM C-3
because the thickness of this layer was not investigated during
this study. (See Zapecza, 1989.) The distribution and range of
textures estimated for the hydrogeologic layers are shown on
the thickness maps. In addition, those K values that repre-
sent individual framework layers (table 4) are shown on their
respective thickness maps so that the distribution of K and
sediment textures can be compared. K values estimated from
well-performance tests (table 4) in the Morses Mill Stream
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basin ranged from 17 ft/day to 266 ft/day and the average K
was 84 ft/day.The structure-contour and thickness maps are
presented in appendix 4.

The results of the GPR surveys in the Morses Mill
Stream study area (fig. 26) confirm only minor differences
in the altitudes of clay surfaces identified within the drainage
basin. The study area is relatively flat lying and capped locally
in the upland parts of the basin with Bridgeton Formation
delta plain deposits, and younger sediments locally flank the
lower part of the drainage basin. Cohansey Sand sediments
are exposed in the shallow erosional valley where Morses
Mill Stream lies. The valley is not as deeply incised as those
in the other two study areas, and the shallow clays identified
in the Morses Mill Stream study area appear to be continuous.
In the areas investigated in the upper part of the basin near
well 011499, GPR records indicate an extensive continuous
clay associated with the surficial MM A-1 aquifer layer. This
surficial layer shows some clay in localized areas but the MM
A-1 aquifer is generally represented by coarse-grained sedi-
ments, and most clays identified in the basin were in the MM
A-1Cl1 leaky confining layer. Clays identified in the MM A-1B
aquifer layer appear to be more common in the lower part of
the basin, although these clays could be present elsewhere but
are obscured in the GPR record by the overlying MM A-1Cl1
leaky confining layer.
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framework of the Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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study area and vicinity, New Jersey Pinelands.



FEET
300

200

100

NAVD 88

-100

-200

-300

Figure 22.
figure 21.)

Hydrogeologic Framework 49
A A’
— 011653 011652 011650 [
n 010706 011503 r
0 4,000 8,000 FEET
\ I | |
[T \
0 1,000 2,000 METERS
EXPLANATION VERTICAL SCALE GREATLY EXAGGERATED
011653 Location of well or borehole shown in GAMMA LOG
hydrogeologic section. Number is RADIATION INCREASES
U.S. Geological Survey well number (UID
g Yy (UID) )
MM Morses Mill
Hydrogeologic framework of the Kirkwood-Cohansey
aquifer system in the Morses Mill study area.
Layer Description
MM A-1 Upper aquifer - upper layer
MM A-1C1 Upper leaky - confining layer
MM A-1B Upper aquifer - lower layer
MM C-1 Middle leaky - confining layer
MM A-2 Middle aquifer
MM C-2 Lower leaky - confining layer
MM A-3 Lower aquifer
MM C-3 Upper Kirkwood - confining layer
Hydrogeologic section A-A’, Morses Mill Stream study area and vicinity, New Jersey Pinelands. (Line of section shown on



50 Hydrogeologic Framework in Three Drainage Basins in the New Jersey Pinelands, 2004-06

FEET B
300
200.0
100
010116
NAVD 88

-100

-200

-300

010200 011499 011623

010116

EXPLANATION

Location of well or borehole shown in
hydrogeologic section. Number is
U.S. Geological Survey well number (UID)

Morses Mill

GAMMA LOG

RADIATION INCREASES
o

Hydrogeologic framework of the Kirkwood-Cohansey
aquifer system in the Morses Mill study area.

Layer Description

MM A-1 Upper aquifer - upper layer

MM A-1C1 Upper leaky - confining layer
MM A-1B Upper aquifer - lower layer

MM C-1 Middle leaky - confining layer
MM A-2 Middle aquifer

MM C-2 Lower leaky - confining layer
MM A-3 Lower aquifer

MM C-3 Upper Kirkwood - confining layer

5,000 10,000 15,000 20,000 FEET

0
[ \ \ |
\

0 2,000 4,000 METERS

VERTICAL SCALE GREATLY EXAGGERATED
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figure 21.)
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Stream study area and vicinity, New Jersey Pinelands.
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Summary and Conclusions

The New Jersey Pinelands area (Pinelands) is a 1.1-
million-acre natural reserve area in southern New Jersey that
overlies the Kirkwood-Cohansey aquifer system in the Atlan-
tic Coastal Plain. This ecologically diverse area supports a
variety of habitats and is home to many threatened and endan-
gered species. Cedar swamps, pine and oak forests, agricul-
tural areas, and planned development dominate the landscape.
Demand for water from the Kirkwood-Cohansey aquifer sys-
tem is increasing as development within the area increases.

To assess the effects of ground-water withdrawals from
the Kirkwood-Cohansey aquifer system on stream and wetland
water levels, the U.S. Geological Survey (USGS), in coop-
eration with the New Jersey Pinelands Commission, began a
multi-phase hydrologic investigation in 2004 to characterize
the hydrologic system that supports the Pinelands aquatic and
wetland communities.

The Albertson Brook, McDonalds Branch, and the
Morses Mill Stream drainage basins (study areas) were
selected for detailed hydrologic assessment to provide the
information needed to develop ground-water flow models that
can predict the response of the aquifer system to increased
ground-water withdrawals. The first phase of this assessment
and the subject of this report is a comprehensive hydrogeo-
logic investigation. During 2004-05, a database of hydrogeo-
logic information was compiled, and a conceptual hydrogeo-
logic framework model was prepared for each of the three
study areas. Existing geophysical and lithologic data were
assessed and new borehole geophysical data were obtained
during the drilling of 21 new wells and one deep borehole
within the three study areas. These data were added to the
database and integrated into the analysis. In addition, surface
geophysical data acquired using ground-penetrating radar
(GPR) along more than 27 mi were analyzed for the three
study areas. Five additional wells installed in upland areas of
the McDonalds Branch basin provided shallow lithologic data.
Ten shallow boreholes were completed, providing lithologic
ground truth for analyzing the GPR records. The assessments
of the shallow lithologic data were added to the analysis, and
the hydrogeologic framework models were finalized.

The hydrogeologic framework models, developed in
preparation for the construction of a ground-water flow model
of each study area, subdivided the Kirkwood-Cohansey
aquifer system described by Zapecza (1989) into seven layers,
characterized by their predominant sediment textures, as aqui-
fers or leaky confining layers. The hydrogeologic framework
of each study area is represented by a model containing four
aquifer layers, separated by three leaky confining layers, and
a basal confining layer. The three hydrogeologic framework
models are similar, but they are distinctly separate; each one
is unique to a particular study area. Hydrogeologic sections,
maps of structure tops, and thickness maps were produced
for each study area model to show differences in sediment
textures within each model layer; the sections and maps are

based on geophysical and lithologic data. The key findings of
this study area are listed below.

The hydrogeology of the three study areas is similar
even though the sediment textures may vary through-
out the Kirkwood-Cohansey aquifer system.

The leaky confining layers are more closely spaced and
the presence of discontinuous clays is generally more
common in the upper part of the aquifer system, which
is principally represented by the Cohansey Sand and
younger surficial deposits.

With the exception of the basal clay confining layers,
the variable and discontinuous nature of clay layers
within the Kirkwood-Cohansey aquifer system was
confirmed by the geophysical and lithologic records.

Results of the investigation indicate considerable vari-
ability in the presence of different sediment textures;
the extent to which this hydrogeologic variability can
be characterized is constrained by the extent of the
available geologic and lithologic data.

Although the Kirkwood-Cohansey aquifer system has
been considered a water-table aquifer in many areas,
localized clays in the aquifers and leaky confining lay-
ers may act to impede the flow of ground water.

In the Albertson Brook and McDonalds Branch study
areas, sediment textures are typically coarser in the
upper 100 ft of the aquifer system than was observed
in the Morses Mill Stream study area.

In the Albertson Brook and Morses Mill Stream study
areas, sediments of layers AB A-3 Lower aquifer and
MM A-3 Lower aquifer, respectively, tend to show
increasing homogeneity as they dip and thicken toward
the southeast. In contrast, the MB A-3 Lower aquifer in
the McDonalds Branch does not thicken substantially
within the study area, does contain clays, and does
exhibit a thicker gradational interval approaching the
base of the aquifer system.

The base of the Kirkwood-Cohansey aquifer system for
this study is generally represented by one of the two
basal clay confining beds identified by Zapecza (1989).

* The regionally extensive basal clay in the lower
part of the Kirkwood Formation is common to
both the Albertson Brook and McDonalds Branch
study areas and is the only layer of the models that
can be correlated between the study areas.

* The base of the aquifer system in the vicinity of
the Morses Mill Stream study area is the thick dia-
tomaceous clay in the upper part of the Kirkwood
Formation.



e The deeper hydrogeologic framework layers tend to
dip to the southeast and generally conform to the slope
of the top of the basal clays. The dip of the overlying
layers appears to decrease slightly where the layers
are closer to the land surface. The tops of the shal-
lower layers generally follow the slope of the drainage
basins, reflecting a closer relation to the erosion-in-
cised valleys that form the basins.

The estimated mean horizontal hydraulic conductivity
(K) values determined from various well tests in the the three
study areas ranged from 84 to 130 feet/day. The estimated
K values from well tests are consistent with those reported
by other investigators for the Kirkwood-Cohansey aquifer
system.
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Appendix 1

Lithologic and geophysical logs of selected boreholes and newly installed wells in
Kirkwood-Cohansey aquifer system, New Jersey Pinelands.
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GAMMA LOG ELECTRIC LOGS
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Figure 1-1. Geophysical logs of AB OW-1D (Well number 071092).
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AB OW-1D Boring Log (Well Number 071092, location shown on figure 6.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft)! (ft)
0 20 Sand and gravel, medium to very coarse, orange brown and brownish yellow
20 25 Sand and gravel, medium to very coarse, contains thin clay layers, tan
Sand and gravel, medium to very coarse, trace iron cemented sand, with some layers of clay, medium
25 30 .
dense, silty, yellow, 10yr7/6
30 40 Fine sand indicated by drilling - cuttings contain fine sand and soft clay
40 45 Sand indicated by drilling — cuttings contain sand medium to very coarse gravel fine and some clay, very
soft, tan
45 50 Sand, very coarse, gravel fine, some iron cemented sand, cuttings contain 30% to 40% clay, silty, soft, tan
50 60 Clay indicated by drilling from 53 ft to 55 ft — cuttings contain clay, light gray some heavily oxidized to
yellow, 10YR 7/6 and fine gravel, 20%
60 65 Clay, tan and very dark gray, trace lignite, mud color turns brown at about 63 feet
65 70 Clay, yellow and very dark gray with little gravel, fine grained
70 76 Clay, sandy, silty, tan/yellow oxidized to orange and clay, very dark gray 10YR 3/1
76 85 Sand indicated by drilling — cuttings contain fine to very coarse sand and about 50 % clay
85 90 Sand, fine to very coarse, trace iron cemented sand
90 95 Sand, fine to very coarse, trace iron cemented sand, and 30% clay, sandy in cuttings
95 100 Sand, medium to very coarse and gravel, fine, and 10% clay, sandy in cuttings
100 105 Sand, medium to very coarse and gravel, fine 20%
105 110 Gravel, fine to coarse and 20% sand, medium to very coarse
110 115 Gravel, medium to very coarse and 20% sand, medium to very coarse, trace clay
115 120 Gravel, medium to very coarse and 20% sand, medium to very coarse, 20 % clay
120 135 Sand, very coarse and gravel, medium to very coarse, trace cemented sand
135 140 Gravel, very coarse. Clay layer indicated by drilling at 137 feet
Gravel, fine to medium, cuttings contain about 20% clay, soft, sandy, mixed with gravel. Drilling indi-
140 145 :
cates sand and gravel. Lenses of sand and gravel are likely
145 150 Gravel, fine to medium, trace clay, trace cemented sand
150 160 Gravel, fine to medium, trace clay, trace cemented sand
160 169 Sand, very fine to coarse, trace clay
169 176 Clay, very dark gray, soft, organic
176 180 Clay, medium dense, very dark gray 10YR 3/1, 10 % mica
180 181.8 Clay, very dark gray 10 YR 3/1, <10% mica, silty, dense--Split spoon sample, 100% recovery

'The soil matrix and color descriptions for all newly drilled boreholes were determined by comparing appropriate samples using the Munsell Soil Color Charts
(1975 ed.), available from Macbeth Division, Kollmorgen Instruments Corporation, 405 Little Britain Rd. New Windsor, N.Y. 12553
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Figure 1-2. Geophysical logs of AB OW-2D (Well number 011504)
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AB OW-2D Boring Log (Well Number 011504 location shown on figure 6.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 40 Sand, fine to medium and fine gravel, drilling indicates 1-ft thick white clay at 38ft
40 45 Sand, fine to medium, some gravel, trace clay
45 50 Sand, fine to medium, some gravel, with some layers of clay
50 65 Sand, fine to coarse, and gravel, iron cemented grains, some clay
65 70 Sand, fine to coarse, and gravel, iron cemented grains, some clay, increasing clay content
70 75 Sand, fine to coarse, and gravel, iron cemented grains, some clay
75 80 Sand, fine to very coarse, and gravel, and Clay — 50% clay in cuttings
30 g2 Split spoon sample, 50% recovery — Clay, light gray and yellow layers bedded with sand, fine to medium
with some silt, little gravel
Sand, fine to coarse, abundant rose quartz, increasing coarseness with depth,
82 89
10% clay
89 100 Sand, coarse, abundant rose quartz, iron cemented sand
100 105 Sand, medium
Clay, indicated by drilling — cuttings contain sand very coarse, and gravel and dark clay, dark brown,
105 111
10YR2/2
111 120 Sand, fine to medium
Sand, medium to coarse, fine, medium brown, trace tan clay in cuttings from
120 130
125-130 ft.
130 140 Sand, very coarse, 10% clay, very dark gray
140 145 Sand, medium to very coarse, trace very dark gray clay
145 150 Sand, medium to very coarse, clay becomes soft, and color changes to red
150 155 Sand, medium to very coarse, 40% clay, very dark gray, change noted at 154 ft.
155 160 Sand, medium to very coarse, 40% clay, very dark gray, clay appears to be in thin layers
160 178 Sand, fine — very little cuttings returned, 20% clay, dark brown
178 180 Clay, medium dense, very dark gray, 10YR3/1, trace mica
180 200 Clay, silty, very dark gray (10YR3/1), trace sand, trace to little lignite




Appendix 1

Shallow boreholes completed in the Albertson Brook basin using Geoprobe® sediment sampling equipment and used in the
interpretation of GPR records.

ALB-B1 (Well Number 011497, location shown on figure 12.)

85

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 4 Sand, fine to medium grained, poorly sorted — saturated at 3 feet
4 6.2 Sand, fine to medium with some coarse sand and gravel
6.2 8 Sand, fine to medium grained
8 12 Sand, fine to coarse grained

ALB-B2 (Well Number 011496, location shown on figure 12.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 12 Sand, fine to very fine grained
12 23 Sand, fine to coarse grained, becoming fine to very fine at 2.3 feet
23 40 No recovery
40 6.4 Sand, fine grained, saturated at 6 feet
64 8.0 Alternating layers of clay and sand, very fine to fine grained
8.0 114 Sand, fine, well sorted, clay present in thin layers, some oxidized zones

ALB-B3 (Well Number 071088, location shown in figure 12.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 6.7 Sand, fine grained, poorly sorted
6.7 7 Clayey sand
7 16 Sand, fine to coarse grained, little clay layers, occasional gravel, saturated at 9 feet
16 20 Sand, fine to very fine grained, with thin clay layers in the interval from 16 to 17.6 feet

ALB-B4 (Well Number 071089, location shown on figure 12.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 4 Sand, fine to medium grained little gravel
4 8 Sand, fine grained to gravel, small amount of clay
8 13.5 Sand, fine grained to gravel, saturated at 12 feet
135 142 Clay with fine grained sand
142 16 Sand, fine grained to gravel
16 20 Sand, fine to medium, with coarse sand and gravel
20 235 Sand, fine to very fine grained
235 24 Sand, fine to coarse grained

24 28 Sand, fine to very fine grained
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MB OW-1D Boring Log (Well Number 051556, location shown on figure 13.)

87

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 1 Clay
1 5 Sand, fine to very coarse, trace gravel
5 15 Sand, fine to very coarse, 20% gravel
15 23 Sand, fine to very coarse, 20% gravel, clay indicated by drilling at 23 ft
23 25 Sand, fine to very coarse, 20% gravel, trace yellow sandy clay in cuttings
25 34 Sand, fine to very coarse, 20% gravel
34 40 Clay indicated by drilling, cuttings: Clay, medium dense, mottled red and gray and very coarse grave, trace
iron cemented sand
40 50 Sand, medium to very coarse, 20% fine gravel, clay in cuttings
50 53 Sand, fine to very coarse, 10% clay
53 54 Clay indicated by drilling
54 61 Clay and sand and gravel layers - cuttings contain clay red, white, and yellow and 30% gravel
Sand and clay layers indicated by drilling — cuttings contain clay, silty and sandy, mottled, yellow, light gray
61 80 - T
and tan and 30% sand medium to very coarse with iron cemented sand
80 83 Sand, medium to very coarse and fine gravel
33 35 Sand and Clay, light to medium gray layers, fine to very coarse, trace iron cemented sand, and 30% clay,
sandy in cuttings
85 93 Sand, coarse to very coarse, layered with 20% clay, light gray
93 100 Sand and gravel indicated by drilling- cuttings contain sand medium to very coarse and gravel fine to coarse
100 110 Sand, fine to very coarse and gravel, fine
110 115 Sand, coarse to very coarse and gravel, fine to coarse, 20% clay
115 119 Sand, coarse to very coarse and gravel, fine to coarse, increased clay content, sandy, light gray, cuttings con-
tain iron cemented sand, chert, friable limestone fragments
119 120 Clay, light gray — drilling mud turns gray
120 126 Sand indicated by drilling, cuttings contain 60% clay
126 140 Clay, medium dense, silty, very dark gray 10YR 2/2
140 145 Clay, medium dense, silty, very dark brown, trace mica
145 160 Clay, medium dense, silty, very dark brown, trace mica, increasing mica content, trace, yellow clay
160 178 Sand indicated by drilling — cuttings contain only clay
178 200 Sand, medium to very coarse — principally clay in cuttings
200 220 Finer sediments indicated by drilling — cuttings contain 10% gravel, 10% yellow sand, fine and 80% clay
220 228 Sand or silt indicated by drilling - no cutting returned
228 240 Clay and fine silt or sand layers indicated by drilling
240 250 Clay, brown and dark gray, occasional sand layers indicated by drilling
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MB OW-2D Boring Log (Well Number 051560; location shown on figure 13.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 10 Sand, medium, heavily oxidized,
10 15 Sand, medium, heavily oxidized — Thin clay indicated by drilling at about 11-12 ft
15 19 Sand, fine to coarse, 10% very coarse gravel — cuttings contain clay, medium light brown and yellow
19 21 Clay, mottled yellow, I0YR 7/6 and light gray with very fine sand in matrix
21 25 Sand and gravel, poorly sorted, trace clay — sand is oxidized yellow and brown — (Drill crew mixes mud)
25 40 Sand and gravel, poorly sorted, 15% clay — Coarse sediments may be due to increased mud viscosity
40 50 Sand and gravel, fine to very coarse, poorly sorted, trace clay, yellow sandy
50 55 Sand and gravel, poorly sorted, 15% clay, yellow, 10YR 7/6 in cuttings not identified by drilling
55 63 Sand and gravel, poorly sorted, 15% clay, yellow, I0YR 7/6 in cuttings not identified by drilling, 10% iron
cemented sand
63 80 Sand, coarse to very coarse and gravel coarse to very coarse
80 90 Gravel, coarse to very coarse
90 95 Gravel, coarse to very coarse, trace gray clay
95 100 Gravel, medium to very coarse, 25% iron cemented sand, trace light gray clay, sandy
100 117 Gravel, coarse to very coarse
117 140 Sand and gravel, fine to coarse, poorly sorted with clay layers - 20% clay, soft, sandy, light gray and yellow
140 150 Sand, fine to coarse, cuttings contain up to 30% light gray clay
150 155 Sand, fine to coarse, cuttings contain up to 60% yellow and light gray clay
155 160 Sand, fine to coarse, cuttings contain 20% clay, very dark gray, 10YR 3/1
160 160.6 Split spoon sample — sand, very fine, grading to clay, yellow and white with very coarse gravel in matrix,
' grading to sand, silty very fine, trace mica
160 165 Sand indicated by drilling, cuttings contain clay, soft, silty — Mud turns grayish yellow
165 175 Sand indicated by drilling- cuttings contain up to 70% clay, sand coarse to very coarse and fine gravel, trace
clear mica — drilling mud turns very dark gray
175 180 Sand, medium to very coarse, well sorted, very dark gray 10YR4/1
180 185 Sand, medium to very coarse, well sorted, very dark gray 10YR4/1, trace lignite
185 190 Sand, medium to very coarse, well sorted, very dark gray 10YR4/1, 10 % lignite, trace very dark gray silty
clay
190 195 Sand, very coarse, dark gray
195 200 Sand, very coarse, dark gray, clay 10%, very dark gray - appears to be thin layers of clay
200 219 Sand, very fine, dark gray — cuttings contain clay, sand trace mica and lignite
219 229 Clay, very soft, dark gray, trace mica
229 235 Clay, medium dense, very dark gray, trace mica
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MB TB-1 Boring Log (Well Number 051597, location shown on figure 13.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 6 Clay layers, trace gravel
6 17 Drilling indicates sand and clay layers — clay is medium dense, light gray
17 20 Sand, medium to coarse, well sorted, trace gravel
20 30 Sand indicated by drilling — cuttings contain sand, very coarse and 50% clay
30 35 Sand indicated by drilling — cuttings contain sand, iron cemented sand and some clay
35 40 Sand, fine to very coarse, trace fine gravel some iron cemented grains
40 50 Sand, very fine to coarse, some iron cemented grains, 20% clay and silt, mud turns from yellow to gray by 50
feet
Sand indicated by drilling — cuttings contain sand very fine to very coarse and up to 15% clay, low density,
50 60 . .
silty, mottled, grayish yellow 10YR6/6
60 70 Sand, fine to very coarse, trace gravel, 10% clay - drilling indicates thin clay layers in section
70 75 Sand, 10% clay, very dark gray 10YR3/1, mud turns dark gray at 72 feet
75 80 Sand, very fine to very coarse — cuttings contain sand, gravel, iron cemented grains, 10 % clay
80 90 Sand, coarse to very coarse, well sorted, very dark brown, 10YR2/2
90 100 Brown sand grades to gray (10YRS5/1) sand, very coarse, well sorted, trace iron cemented sand, trace fine
white coarse gravel
100 106 Sand, medium to coarse, trace lignite and dark gray clay in cuttings
106 110 Sand or silt indicated by drilling — cuttings contain fine to medium gray sand, trace lignite, mud turns very
dark gray
110 115 Sand, medium to coarse and clay soft, very dark gray, trace lignite
115 120 Sand with clay layers indicated by drilling — cuttings contain sand, very coarse and clay, dark gray, silty
120 139 Sand, very coarse, gray, trace soft dark gray, trace lignite in cuttings 125 to 139
139 140 Clay, soft, black (10YR2/1), mica rich, organic
140 145 Sand indicated by drilling, cuttings contain sand, very coarse and soft silty very dark gray clay
145 150 Very file sand or silt indicated by drilling — cuttings contain silty clay, very dark gray, trace mica
150 155 Sand, very fine, very dark gray — cuttings include soft silty clay, abundant mica
155 165 Clay, soft silty, very dark gray, trace mica
165 170 Drilling indicates layers of soft silty clay bedded with sand — cuttings contain clay, very dark gray, soft silty,
trace gravel
170 175 Clay, silty a few sand or gravel layers
175 188 Sand, very fine, clay - soft easy drilling, possibly sand and clay layers or sandy clay
188 195 Clay, very dark brown — traces of olive gray clay with dark sand grains
195 200 Clay, olive gray (5YR4/2) containing dark sand grains, abundant mica
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Boring logs for the five shallow wells completed in the upland areas of the McDonalds Branch basin.

MB UP-1 (Well Number 051589, location shown on figure 13.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 5 Sand, fine to coarse, trace gravel
5 16 Sand, fine to very coarse, gravel (20%), trace iron cemented sand, trace clay, mud color change to yellow
16 20 Sand, medium to very coarse, (20%) iron cemented sand, trace clay, mud color change to brown
20 27 Sand, medium to coarse grained, tan, trace clay

MB UP-2 (Well Number 051587, location shown on figure 13.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 5 Sand, medium to coarse
5 15 Sand, medium to coarse, and clay, sandy, yellow
15 20 Sand, coarse to very coarse, with fine to medium gravel, layer of iron cemented sand at 17 feet
20 22 Sand, coarse to very coarse, with fine to medium gravel
22 23 Clay, light gray, silty with very fine sand, medium dense
23 24 Clay, very dark grayish brown (10YR 3/2), silty

MB UP-3 (Well Number 051592, location shown on figure 13.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 7 Sand and gravel, yellowish brown, clay (20%), yellow, sandy
7 10 Sand and gravel, fine to medium, some clayey sand in cuttings
10 19 Sand and gravel, fine to medium, some clayey sand in cuttings with stringers of medium to coarse iron
cemented sand
19 20 Clay, sandy, silty, very soft, contains 60% sand
20 24 Clay, sandy, silty, very soft, contains 60% sand
24 32 Sand, medium to coarse, well sorted, gravel at 31 feet, contains iron cemented sand

MB UP-4 (Well Number 051595, location shown on figure 13.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 8 Sand and gravel
8 11 Clay, soft, sandy
11 20 Sand, medium to very coarse and gravel, fine to medium
20 27 Sand, tan, medium to coarse, well sorted, trace very coarse grains

MB UP-5 (051596, location shown on figure 13.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 20 Sand, coarse to very coarse with clay layers
20 40 Sand fine to very coarse, trace clay in cuttings
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Shallow borings completed in the McDonalds Branch basin using Geoprobe® sediment sampling equipment and used as ground
truth for analyzing the GPR survey lines.

MDB-B1 (Well Number 051550, location shown on figure 19.)

93

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 6.0 Sand, fine to coarse grained
6.0 6.2 Clay
6.2 7.5 Sand, very fine grained
8.6 92 Sandy clay
9.2 11.5 Sand, fine grained, with some clay in matrix, saturated at 11.5
11.5 15.5 Sand, medium to fine grained, trace clay in layers
15.5 16.1 Clay with some thin sand stringers
16.1 19.5 Clay, organic rich
19.5 19.6 Sand layer
19.6 225 Clay, organic rich
22.5 275 Sand, fine to coarse grained

MDB-B2 (Well Number 051551, location shown on figure 19.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 8 Sand, fine to coarse grained, saturated at 6 feet
8 9 Clay
9 15.1 Sand, medium to fine grained
15.1 19.1 Sand, very fine to coarse grained

MDB-B3 (Well Number 051552, location shown on figure 19.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 15 Sand, fine grained
1.7 23 Sand, some silt and clay
35 6.9 Sand with some clay, saturated at 3.5 feet
7.5 15.5 Sand, very fine to fine grained, some clay

MDB-B4 (Well Number 051554, location shown on figure 19.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 114 Sand, fine, with some very fine and medium grained sand
114 154 Sand, very fine, well sorted grading to poorly sorted at 15.2 feet
154 194 Sand, medium and fine grained




94 Hydrogeologic Framework in Three Drainage Basins in the New Jersey Pinelands, 2004-06

Shallow borings completed in the McDonalds Branch basin using Geoprobe® sediment sampling equipment and used as ground
truth for analyzing the GPR survey lines.—Continued

MDB-B5 (Well Number 051555, location shown on figure 19.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 34 Sand and gravel
34 114 Sand, medium grained, saturated at 8 feet
114 154 Sand, coarse, grading to medium and some fine sand at base, clay 13.8 to 14.0
154 17.5 Sand, medium and some fine sand
17.5 194 Sand, coarse

MDB-B6 (Well Number 051553, location shown on figure 19.)

Top of Bottom of
interval interval Description of sediments from core samples
(ft) (ft)
0 7.8 Sand, fine grained, little gravel, trace silt and clay
7.8 94 Silt, clay and sand, fine grained
94 12.0 Layers of clay, silt and fine sand
12 13.1 Sandy clay, with clay layers, saturated at 12.7 feet
13.1 16 Sand, medium with some fine grains
16 20 Sand, medium to fine, grading to coarse sand with some gravel at 20 feet
20 24 Sand, medium with some fine sand, trace coarse sand near 24 feet

24 28 Sand, fine and medium trace silt
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MM OW-1D Boring Log (Well Number 011499, location shown on figure 20.)

Top of Bottom of

interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 8 Sand and gravel coarse
8 15 Sand tan clayey in (?) gravel
15 20 Gravel very coarse with layers of white dense sandy clay
20 23 Sand and gravel fine to coarse color changes to tan
23 34 Clay tan and oxidized silt and very fine sand in matrix
34 45 Sand and gravel very coarse some clay between 40 and 45
45 50 Sand and gravel very coarse 50% clay in layers
50 55 Sand fine to very coarse with very coarse gravel
55 60 Clay yellow and very dark gray with little gravel fine grained
60 70 Sand fine to very coarse, drilling indicates one thin (?) clay layer in the 60-65 interval
70 74 Clay indicated by drilling
74 80 Sand fine to very coarse little gravel (20%)
80 84 Sand fine to very coarse and gravel very coarse trace limestone like grains
84 88 Clay light grayish brown sandy
88 91 Sand very coarse
91 100 Clay light gray sandy contains very coarse gravel grades to light brownish gray (10yr 6/2)

Split spoon sample: 100 ft to 100.2 ft - Clay light gray soft silty over 100.2 to 100.8 - Sand fine to medium well

100 1008 sorted about 15% clay in matrix

100 104 Sand soft contains clay

104 109 Sand fine to coarse

109 110 Sand coarse gravel and 50% clay in cuttings

110 115 Layered sand and clay - clay very dark gray(Syr 3/1) sandy and contains lignite

120 125 Sand fine to medium

125 130 Drilling indicates very coarse sand and gravel: Cuttings contain clay sand fine to medium and gravel

130 140 Sand fine to medium some clay and gravel in cuttings

140 145 Sand fine to very coarse

145 150 Sand fine to very coarse fine gravel some (30%) clay

150 155 Sand ranges from very fine to very coarse some gravel little clay; possibly in thin layers

155 160 Sand very fine to medium trace very coarse grians grayish brown (2.5yr 5/2)

160 189 Sand gray (Syr 5/1) fine well sorted lignite content increases from 170 to 180 - 175 to 180 includes traces of
mica

189 212 Clay dark gray (5y 4/1) lignite and mica no sand in cuttings

212 216 Drilling indicates very fine sand or soft clay

216 220 Clay
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MM OW-2D Boring Log (Well Number 011503, location shown on figure 20.)

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
0 20 Sand medium to very coarse and gravel fine to very coarse encountered thin lense of clay at 17.2 feet
20 25 Sand medium to very coarse trace clay
25 30 Sand medium to very coarse little clay (20%)
30 35 Sand medium to very coarse trace clay
35 40 Sand medium to very coarse - drilling indicates no clay from 20-40 ft
40 60 Sand and gravel very coarse trace clay 20% friable limestone like gravel size pieces
60 74 Sand and gravel very coarse limestone like pieces little (20%) sandy clay
74 76 Clay sandy brownish yellow (10YR 6/8)
76 71 Sand and gravel very coarse
77 80 Clay very pale brown (10YR 8/2) sandy
74 80 Sand fine to very coarse little gravel (20%)
80 98 Clay very pale brown sandy soft and sand and gravel color change to darker brown at 89 feet
98 100 Clay dark gray (7.5YR 4/0) sandy and clay gray (10YR 6/1) fine sand in martix
100 108 Sand and clay layers Rod change at 100 feet indicated 4 feet of wash in bottom hole
108 115 Sand very fine cuttings contain clay
115 120 Clay very dark brown (10YR 2/1)
120 130 Drilling indicates sand cuttings contain sand medium and up to 50% clay
135 140 Sand fine to coarse
109 110 Sand coarse gravel and 50% clay in cuttings
110 115 Layered sand and clay - clay very dark gray(Syr 3/1) sandy and contains lignite
115 120 Clay very dark brown (10YR 2/1)
120 125 Drilling indicates sand cuttings contain sand medium and up to 50% clay
125 130 Drilling indicates sand cuttings contain sand medium little clay
135 140 Sand fine to medium driller indicates sand but some clay in cuttings
140 145 Sand tan fine to very coarse
145 150 Sand tan medium to very coarse
150 155 Sand coarse to very coarse fine gravel trace clay in cuttings
155 160 Sand coarse to very coarse fine gravel trace dark gray silt stone
160 170 Sand tan fine to very coarse trace black grains and white friable hard clay like minerals
170 175 Sand indicated by drilling; cuttings contain coarse to very coarse sand trace dark gray sandy clay
175 180 Sand coarse to very coarse with fine gravel trace medium dark gray clay and white friable hard clay like
minerals
180 185 Sand indicated by drilling; cuttings contain little light and dark gray clay trace to 15% lignite and coarse to
very coarse sand
185 190 Sand some clay and lignite
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MM OW-2D Boring Log (Cont.) (Well Number 011503, location shown on figure 20.)—Continued

99

Top of Bottom of
interval interval Description of cuttings unless noted otherwise
(ft) (ft)
190 195 Clay, gray, very soft organic 20% lignite mud change color
195 200 Sand fine and clay (50%) dark gray lignite trace mica
200 209 Sand very fine well sorted micaeous
209 216 Clay, gray, soft, micaeous, easy drilling
216 220 Clay with sand layers
220 225 Sand grading to clay gray soft
225 230 Clay very dark gray (Sy 3/1), soft, contains silt
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Altitude, thickness, estimated sand content, and (or) horizontal hydraulic conductivity of
hydrogeologic layers of the Kirkwood-Cohansey aquifer system, Albertson Brook study
area and vicinity, New Jersey Pinelands.
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Brook study area and vicinity, New Jersey Pinelands.
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Figure 2-7. Thickness, estimated sand content, and horizontal hydraulic conductivity of the AB C-1 leaky confining layer of the
Kirkwood-Cohansey aquifer system, Albertson Brook study area and vicinity, New Jersey Pinelands.



Appendix 2
74758 74°45' 74°40"
~\ BERLN : o
YOWNSHIP\  EVESHAM N /ol
134ER R TOWNSHIP ,{\( 0"%}
. S
s ’
, 5 Y 8
\; @ A \
GLOUCEY 7 S .
132 RO
TOWNSHI N /
39° P B
45 [ ~
/ o~ C~ ATE ORD TOWNS .
CAMDEN > -
135 COUNTY v %
° : L H
61 w0
102 X
. > ‘ -30. WASRHINGTON
A & TOWAISH}#
\ -
GLQUCESTER
COUNTY
39°
40' # —
§
QNROENOWNSHIP™y, ) o6
®
o - ATLANTIC
- \ COUNTY '
AN \ A 4 e
4 )1322¢ ',
e L \ p ULJEA TOWNSHIP
o \‘(.% )//p
FRANKLIN FLSOI\/I < y 1357\ »
TOWNSHIP N w BOROUGH % A <
<7 g DYE A HAMILTQN
~_|e Y | N8 fownsHip \ |
Base from U.S. Geological Survey digital line graph files, 1:24,000, , e

Universal Transverse Mercator projection, Zone 18, NAD83

EXPLANATION
——20— STRUCTURE CONTOUR-Shows approximate
altitude of the top of the AB A-2 aquifer layer, in
feet. Contour interval 20 feet. Datum is NAVD 88

= o . === Albertson Brook drainage basin

Albertson Brook study area

47 ®  Well or borehole. Number is altitude of the top of
the layer, in feet. Datum is NAVD 88

| J

o —o

4 KILOMETERS

109

Figure 2-8.  Structure contours of the top of the AB A-2 aquifer layer of the Kirkwood-Cohansey aquifer system, Albertson Brook study

area and vicinity, New Jersey Pinelands.
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Figure 2-13. Thickness, estimated sand content, and horizontal hydraulic conductivity of the AB A-3 aquifer layer of the Kirkwood-
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Altitude, thickness, estimated sand content, and (or) horizontal hydraulic conductivity of

hydrogeologic layers of the Kirkwood-Cohansey aquifer system, McDonalds Branch study
area and vicinity, New Jersey Pinelands.
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Figure 3-1. Thickness and estimated sand content of the MB A-1 aquifer layer of the Kirkwood-Cohansey aquifer system, McDonalds
Branch study area and vicinity, New Jersey Pinelands.
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Figure 3-3. Thickness and estimated sand content of the MB A-1C1 leaky confining layer of the Kirkwood-Cohansey aquifer system,
McDonalds Branch study area and vicinity, New Jersey Pinelands.
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Figure 3-4.  Structure contours of the top of the MB A-1B aquifer layer of the Kirkwood-Cohansey aquifer system, McDonalds Branch
study area and vicinity, New Jersey Pinelands.
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Figure 3-5. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MB A-1B aquifer layer of the Kirkwood-
Cohansey aquifer system, McDonalds Branch study area and vicinity, New Jersey Pinelands.
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Figure 3-7. Thickness and estimated sand content of the MB C-1 leaky confining layer of the Kirkwood-Cohansey aquifer system,
McDonalds Branch study area and vicinity, New Jersey Pinelands.
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Figure 3-8.  Structure contours of the top of the MB A-2 aquifer layer of the Kirkwood-Cohansey aquifer system, McDonalds Branch

study area and vicinity, New Jersey Pinelands.
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Figure 3-9. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MB A-2 aquifer layer of the Kirkwood-
Cohansey aquifer system, McDonalds Branch study area and vicinity, New Jersey Pinelands.
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Figure 3-10.  Structure contours of the top of the MB C-2 leaky confining layer of the Kirkwood-Cohansey aquifer system, McDonalds

Branch study area and vicinity, New Jersey Pinelands.
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Figure 3-11. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MB C-2 leaky confining layer of the
Kirkwood-Cohansey aquifer system, McDonalds Branch study area and vicinity, New Jersey Pinelands.
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Figure 3-13. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MB A-3 aquifer layer of the Kirkwood-
Cohansey aquifer system, McDonalds Branch study area and vicinity, New Jersey Pinelands.
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Altitude, thickness, estimated sand content, and (or) horizontal hydraulic conductivity

of hydrogeologic layers of the Kirkwood-Cohansey aquifer system, Morses Mill Stream
study area and vicinity, New Jersey Pinelands.
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Figure 4-1. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MM A-1 aquifer layer of the Kirkwood-
Cohansey aquifer system, Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-3. Thickness and estimated sand content of the MM A-1C1 leaky confining layer of the Kirkwood-Cohansey aquifer system,
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Figure 4-4. Structure contours of the top of the MM A-1B aquifer layer of the Kirkwood-Cohansey aquifer system, Morses Mill Stream

study area and vicinity, New Jersey Pinelands.
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Figure 4-5. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MM A-1B aquifer layer of the Kirkwood-
Cohansey aquifer system, Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-6. Structure contours of the top of the MM C-1 leaky confining layer of the Kirkwood-Cohansey aquifer ststem, Morses Mill

Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-7. Thickness and estimated sand content of the MM C-1 leaky confining layer of the Kirkwood-Cohansey aquifer system,
Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-8. Structure contours of the top of the MM A-2 aquifer layer of the Kirkwood-Cohansey aquifer system, Morses Mill Stream
study area and vicinity, New Jersey Pinelands.
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Figure 4-9. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MM A-2 aquifer layer of the Kirkwood-
Cohansey aquifer ststem, Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-10. Structure contours of the top of the MM C-2 leaky confining layer of the Kirkwood-Cohansey aquifer ststem, Morses Mill
Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-11. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MM C-2 leaky confining layer of the
Kirkwood-Cohansey aquifer system, Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-12.  Structure contours of the top of the MM A-3 aquifer layer of the Kirkwood-Cohansey aquifer system, Morses Mill Stream

study area and vicinity, New Jersey Pinelands.
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Figure 4-13. Thickness, estimated sand content, and horizontal hydraulic conductivity of the MM A-3 aquifer layer of the Kirkwood-
Cohansey aquifer system, Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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Figure 4-14. Structure contours of the top of the MM C-3 Upper Kirkwood confining layer of the Kirkwood-Cohansey aquifer system,
Morses Mill Stream study area and vicinity, New Jersey Pinelands.
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